期刊文献+

基于树莓派的智能零售系统设计

Design of an Intelligent Retail System Based on Raspberry Pi
下载PDF
导出
摘要 零售智能化改革不仅有效地提升了销售效率,而且一定程度降低了人工成本,为零售业带来了便利和效益。文章基于深度学习算法,利用自建的商品数据集进行模型训练,在嵌入式系统上运行并进行了研究。采用树莓派4B开发板作为硬件核心,设计了一套集成称重、识别和交互功能的智能零售系统。这套系统充分利用了深度学习算法的优势,通过对商品数据的分析和处理,能够快速准确地识别商品。一系列的测试结果表明,该系统实现了预期的功能,为研究的正确性提供了有力的支持。 Retail intelligence reform has not only effectively improved sales efficiency,but also reduced labor costs to a certain extent,bringing convenience and benefits to the retail industry.Based on Deep Learning algorithm,this paper uses a selfbuilt commodity dataset for model training,which is ran on embedded systems and researched.A Raspberry Pi 4B development board is used as the hardware core,and an intelligent retail system integrating weighing,recognition and interaction functions is designed.This system fully utilizes the advantages of Deep Learning algorithm,and can quickly and accurately identify goods through the analysis and processing of commodity data.After a series of tests,the results show that the system has achieved the expected functions,providing strong support for the correctness of the research.
作者 朱镕佳 杨宇轩 李振东 陈硕 唐朝阳 唐晓雨 ZHU Rongjia;YANG Yuxuan;LI Zhendong;CHEN Shuo;TANG Chaoyang;TANG Xiaoyu(School of Communication and Artificial Intelligence,School of Integrated Circuits,Nanjing Institute of Technology,Nanjing211167,China)
出处 《现代信息科技》 2024年第19期189-192,198,共5页 Modern Information Technology
基金 2023年江苏省大学生创新培训项目(202311276078Y) 2021年度江苏省高校哲学社会科学研究一般项目(2021SJA0415)。
关键词 树莓派 深度学习 物品识别 人机交互 Raspberry Pi Deep Learning item recognition human-computer interaction
  • 相关文献

参考文献10

二级参考文献59

  • 1徐杰民,肖云.二维条码技术现状及发展前景[J].计算机与现代化,2004(12):141-142. 被引量:62
  • 2TIAN Y Q,MCCALL D G,TAN J. Intelligent machine vision for meat eating quality assessment[ C ]//Proceedings of the First Joint Australia and New Zealand Biennial Conference: DICTA' 97 ( Digital Image Computing Techniques and Applications and IVCN2' 97. ). Auckland, New Zealand : Massey University,Albany Campus, 1997:567 - 572.
  • 3O' FARREL M,LEWIS E,FLANAGAN C,et al. Comparison of kNN and neural network methods in the classification of spectral data from an optical fiber-based sensor system used for quality control in the food industry[J]. Sensors and Actuators,2005,111/112:354 - 362.
  • 4O' FARREL M,LEWIS E,FLANAGAN C,et al. Design of a system that uses optical-fiber sensors and neural networks to control a large-scale industrial oven by monitoring the food quality online[J]. IEEE Sensors Journal, 2005,5(5) :1407 - 1420.
  • 5TRUEBA E A,OROPEZA M J L,ORTIZ C A,et al. Identification of eroded zones with digital images using artificial neural networks [ J ]. Agrociencia,2004 ,38 (6) :573 - 581.
  • 6AHMAD I S,REID J F,PAULSEN M R,et al. Color classifier for symptomatic soybean seeds using image processing[J]. Plant Disease,1999,83(4) : 320 - 327.
  • 7章毓晋.图像分析[M].2版.北京:清华大学出版社,2005.
  • 8Kenneth RCasiltman.数字图像处理[M].北京:电子工业出版社,2002..
  • 9罗及红.一种高精度的电子秤设计[J].计算机测量与控制,2010,18(8):1955-1958. 被引量:53
  • 10秦小文,温志芳,乔维维.基于OpenCV的图像处理[J].电子测试,2011,22(7):39-41. 被引量:66

共引文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部