摘要
针对传统方法在解决带有复杂约束的工程优化问题时的不足,提出了一种基于交叉变异的混合白鲸优化算法(hybrid crossover variation beluga whale optimization,HCVBWO)。首先采用佳点集映射初始化种群从而增加种群的多样性;其次采用交叉变异策略增强了算法中期的开发能力;最后采用自适应混合扰动策略平衡了算法后期的局部和全局搜索能力。将HCVBWO算法与其他6种算法在IEEE CEC2014进行仿真试验,结果证明了HCVBWO具有良好的寻优能力和鲁棒性,此外,将HCVBWO算法运用到2种机械工程设计问题以及1个生产调度问题中,验证了所提算法在工程优化问题中的优越性。
A hybrid crossover variation beluga whale optimization(HCVBWO)is proposed to address the limitations of traditional methods in solving engineering optimization problems with complex constraints.Firstly,the algorithm utilizes an optimal point set mapping to initialize the population,thereby increasing the diversity of the population.Secondly,a cross-variation strategy is employed to enhance the algorithm’s mid-term development capability.Finally,an adaptive mixed perturbation strategy is used to balance the algorithm’s late-stage local and global search capabilities.The HCVBWO algorithm is compared with six other algorithms using simulations on the IEEE CEC2014 benchmark test set,and the results demonstrate the algorithm’s strong optimization capability and robustness.Furthermore,the application of the HCVBWO algorithm to two mechanical engineering design problems and a production scheduling problem verifies its superiority in engineering optimization.
作者
亓祥波
赵品威
宋岩
王润
QI Xiangbo;ZHAO Pinwei;SONG Yan;WANG Run(School of Mechanical Engineering,Shenyang University,Shenyang 110044,CHN;School of Physics,Liaoning University,Shenyang 110036,CHN)
出处
《制造技术与机床》
北大核心
2024年第11期149-159,共11页
Manufacturing Technology & Machine Tool
基金
国家自然科学基金项目(92067110)
辽宁省教育厅高等学校基本科研项目(LJKQZ2021164)
辽宁省自然科学基金项目(2022-KF-12-11)。
关键词
白鲸优化算法
佳点集
交叉变异
高斯分布
萤火虫算法
工程应用
置换流水车间调度
beluga whale optimization
good point set
cross-variation
gaussian distribution
fire-fly algorithm
Engineering applications
PFSP