摘要
通过对高压断路器振动信号的分析,可根据不同振动特征识别故障类型。利用改进小波阈值去噪法进行断路器振动信号的数据预处理,并通过小波包变换提取各频段能量占比,在对能量分布特性开展分析的基础上实现高压断路器故障诊断。工程实例表明,该方法能够有效实现高压断路器机械故障诊断,为高压断路器智能运检提供了一种新技术手段。
By analyzing the vibration signals of high voltage circuit breakers(HVCB),fault types can be identified based on their different vibration characteristics.Using an improved wavelet threshold denoising method for data preprocessing of circuit breaker vibration signals,and extracting the energy proportion of each frequency band through wavelet packet transform,HVCB fault diagnosis is achieved based on the analysis of energy distribution characteristics.Engineering examples show that the method proposed in this paper can effectively achieve mechanical fault diagnosis of HVCB,providing a new technological means for intelligent operation and inspection of high-voltage circuit breakers.
作者
马兆兴
刘金鑫
李继
王晶
陈昊
纪皓民
王瑞华
MA Zhaoxing;LIU Jinxin;LI Ji;WANG Jing;CHEN Hao;JI Haomin;WANG Ruihua(School of Information and Control Engineering,Qingdao University of Technology,Qingdao 266520,China;State Grid Jiangsu Electric Power Co.,Ltd.Nanjing Power Supply Branch Company,Nanjing 210019,China)
出处
《湖南电力》
2024年第5期124-130,共7页
Hunan Electric Power
基金
国家自然科学基金项目(62203248)
电网运行风险防御技术与装备全国重点实验室资助项目(SGNR0000KJJS2302137)。
关键词
高压断路器
振动信号
小波变换
能量提取
智能运检
high-voltage circuit breaker(HVCB)
vibration signal
wavelet transform
energy extraction
intelligent maintenance