摘要
在医学图像处理领域,准确的图像分割对于主动脉疾病的诊断和治疗规划至关重要。深度学习技术,尤其是卷积神经网络近年来在医学图像分割任务中取得了显著的进展。本文基于深度学习模型应用于主动脉病变图像自动化分割的研究进行综述,总结了目前这些技术对于提高分割精度和效率方面的贡献,探讨了现有方法所面临的挑战和未来研究更多的可能性以及方向。
In the field of medical image processing,accurate image segmentation is crucial for the diagnosis and treatment planning of aortic diseases.Deep learning techniques,especially convolutional neural networks,have made significant progress in medical image segmentation tasks in recent years.This article reviewed the research on the application of deep learning models to the automatic segmentation of aortic lesion images,summarized the contributions of these current techniques to improving the segmentation accuracy and efficiency,and discussed the challenges faced by existing methods and more possibilities and directions for future research.
作者
唐玉宁
潘天岳
董智慧
符伟国
TANG Yuning;PAN Tianyue;DONG Zhihui;FU Weiguo(Department of Vascular Surgery,Zhongshan Hospital of Fudan University,Shanghai 200032,China)
出处
《山东大学学报(医学版)》
CAS
北大核心
2024年第9期66-73,共8页
Journal of Shandong University:Health Sciences
关键词
深度学习
主动脉图像分割
卷积神经网络
主动脉疾病
计算机视觉
Deep learning
Aortic image segmentation
Convolutional neural networks
Aortic disease
Computer vision