期刊文献+

卡尔文-本森-巴萨姆循环的调节 被引量:1

Regulation of the Calvin-Benson-Bassham cycle
原文传递
导出
摘要 光合碳还原循环或卡尔文-本森-巴萨姆(CBB)循环是光合自养生物的核心碳反应,每年固定约百亿吨的CO_(2),是无机碳转变为有机碳的主要途径。提高这个循环的固碳效率是提高作物产量的有效途径之一。该循环是由11个酶催化的13步反应构成的代谢网络,循环每进行一次固定一分子CO_(2)。在过去的几十年里,构建的反义与过表达转基因植株揭示了关键酶对循环的调控作用,成为光合作用研究领域的前沿热点与重要改造靶点。本文系统综述该循环途径以及中间代谢物与产物的利用,以及11个反应酶和非酶因素对循环的调控作用,重点阐述核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)对循环及自身活性的调控,最后展望和讨论了CBB循环未来的研究。 The Calvin-Benson-Bassham(CBB)cycle is the central carbon reaction path in autotrophs,assimilating a billion tons of CO_(2) every year and gatekeeping between the inorganic and organic phases of the global carbon cycle.Ameliorating CBB cycle efficiency is one promising strategy to increase crop yields.The CBB cycle is a complicated metabolic network including 13 steps catalyzed by 11 enzymes,in which one molecule of CO_(2) is fixed per cycle.In the last decades,antisense and overexpression transgenic plants have been generated and used to ascertain the extent of individual enzymes in regulating the rate of carbon fixation.The regulation of the CBB cycle has become a hotspot and important target in the field of photosynthesis research.This review provides a systematic summary of the cycle pathways and the utilization of circulating intermediate metabolites and products.The regulation of circulation by 11 core enzymes and non-enzymatic factors is elaborated upon,especially the regulation by rebulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco)on the cycle and its own activity.At the end,the future of the CBB cycle research is prospected and discussed.
作者 李春荣 张馨 刘翠敏 LI Chun-Rong;ZHANG Xin;LIU Cui-Min(Key Laboratory of Seed Innovation,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;University of Chinese Academy of Sciences,Beijing 100101,China)
出处 《生命科学》 CSCD 2024年第10期1213-1225,共13页 Chinese Bulletin of Life Sciences
基金 国家重点研发计划(2021YFF1000203)。
关键词 光合作用 卡尔文-本森-巴萨姆(CBB)循环 核酮糖-1 5-二磷酸羧化酶/加氧酶 碳固定 环境因素 photosynthesis Calvin-Benson-Bassham(CBB)cycle Rubisco carbon fixation environmental factors
  • 相关文献

参考文献16

二级参考文献149

  • 1王焘,郑国生,邹琦.小麦光合午休过程中RuBPCase活性的变化[J].植物生理学通讯,1996,32(4):257-260. 被引量:22
  • 2蒋德安 饶立华 等.低钾对水稻产量形成的一些生理效应[J].浙江农业大学学报,1987,13(4):441-444.
  • 3李立人 王维光 等.苜蓿二磷酸核酮糖(RuBP)羰化酶体内活化作用的调节[J].植物生理学报,1986,12:33-39.
  • 4Baalmann, E., Backhausen, J.E., Klitzmann, C., and Scheibe, R. (1994). Regulation of NADP-dependent glyceraldehyde-3- phosphate dehydrogenase activity in spinach chloroplasts. Bot. Acta. 107, 313-320.
  • 5Baalmann, E., Backhausen, J.E., Rak, C., Vetter, S., and Scheibe, R. (1995). Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde- 3-phosphate dehydrogenase. Arch. Biochem. Biophys. 324, 201-208.
  • 6Baalmann, E., Scheibe, R., Cerff, R., and Martin, W. (1996). Functional studies of chloroplast glyceraldehyde-3-phosphate dehydrogenase subunits A and B expressed in Escherichia coli. formation of highly active A4 and B4 homotetramers and evidence that the aggregation of the B4 complex is mediated by the B-subunit carboxv terminus. Plant Mol. Biol. 32. 505-513.
  • 7Buchanan, B.B., and Balmer, Y. (2005). Redox regulation: a broadening horizon. Annu. Rev. Plant Biol. 56, 187-220.
  • 8Collin, V., Issakidis-Bourguet, E., Marchand, C., Hirasawa, M., Lancelin, J.M., Knaff, D.B., and Miginiac-Maslow, M, (2003). The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J. Biol. Chem. 278, 23747-23752.
  • 9Collin, V., Lamkemeyer, R, Miginiac-Maslow, M., Hirasawa, M., Knaff, D.B., Dietz, K.J., and Issakidis-Bourguet, E. (2004). Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol. 136, 4088-4095.
  • 10Dai, S., Friemann, R., Glauser, D.A., Bourquin, F., Manieri, W., Schurmann, R, and Eklund, H. (2007). Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Nature. 448, 92-96.

共引文献259

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部