期刊文献+

基于Cascade Mask Region-Convolutional Neural Network-ResNeSt的隧道光面爆破炮孔残痕智能识别方法

Intelligent Recognition Method for Tunnel Smooth Blasting Borehole Residues Based on Cascade Mask Region-Convolutional Neural Network-ResNeSt
下载PDF
导出
摘要 为解决现有隧道炮孔残痕识别方法中存在的识别精度不足、鲁棒性较低以及检测速度较慢等问题,提出一种名为Cascade Mask Region-Convolutional Neural Network(Cascade Mask R-CNN)的隧道炮孔残痕识别算法。该算法以Cascade Mask R-CNN实例分割算法为基础,采用先进的Res Ne St网络作为主干网络(Cascade MaskR-CNN-S),增强Cascade Mask R-CNN算法获取特征信息的能力,提升识别的精度;接着采用多尺度训练方式与学习率调整策略对网络进行训练得到智能识别模型,提升识别算法的鲁棒性;最后以平均精度值m AP为测试指标与传统的Cascade Mask R-CNN、Mask R-CNN等算法进行对比试验。研究表明:改进算法的预测框(IoU阈值为0.5)平均精度值(b_m AP(50))与分割(IoU阈值为0.5)平均精度值(s_m AP(50))分别高达0.415、0.350;相较于传统的实例分割算法,改进的算法在隧道炮孔残痕识别精度上有显著提升,隧道爆破残痕长度识别误差仅为8.3%,针对隧道复杂的作业环境具有更好的鲁棒性,抗干扰能力更强。 In order to solve the problems such as insufficient recognition accuracy,low robustness,and slow detec‐tion speed in existing methods for recognizing tunnel borehole residues,an algorithm named Cascade Mask RegionConvolutional Neural Network(Cascade Mask R-CNN)is proposed.This algorithm is based on the Cascade Mask R-CNN instance segmentation algorithm and utilizes the advanced ResNeSt network as its backbone(Cascade Mask R-CNN-S)to enhance the feature extraction capability,thereby improving recognition accuracy.Multi-scale training methods and learning rate adjustment strategies are employed to train the network,resulting in an intelligent recogni‐tion model that enhances the robustness of the recognition algorithm.The model's performance was compared to tra‐ditional algorithms like Cascade Mask R-CNN and Mask R-CNN using mean average precision(mAP)as the evalu‐ation metric.The study shows that the improved algorithm achieves an average precision value of 0.415 for bounding boxes(b_mAP(50))and 0.350 for segmentation(s_mAP(50))at an IoU threshold of 0.5.Compared to traditional in‐stance segmentation algorithms,the improved algorithm significantly enhances the accuracy of tunnel borehole resi‐due recognition,with a length recognition error of only 8.3%.It also demonstrates better robustness and anti-inter‐ference capabilities in the complex working environment of tunnels.
作者 旷华江 刘光辉 李大林 徐骁 杨卫康 杨廷发 邓兴兴 张运波 田茂豪 KUANG Huajiang;LIU Guanghui;LI Dalin;XU Xiao;YANG Weikang;YANG Tingfa;DENG Xingxing;ZHAGN Yunbo;TIAN Maohao(Guizhou Road and Bridge Group Co.,Ltd.,Guiyang 550001;School of Civil Engineering,Central South University,Changsha 410075;Chongqing Geological Exploration and Mineral Resources Development Group Inspection and Testing Co.,Ltd.,Chongqing 400700)
出处 《现代隧道技术》 CSCD 北大核心 2024年第5期99-110,共12页 Modern Tunnelling Technology
基金 贵州路桥集团有限公司科技项目(GPTJ-18-QJ-01) 贵州省交通运输厅科技项目(2021-122-047,2023-122-008).
关键词 隧道工程 炮孔残痕 实例分割 深度学习 神经网络 Tunnel engineering Borehole residue Instance segmentation Deep learning Neural networks
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部