摘要
为提升隧道定期巡检中裂缝的检测精度和检测效率,以ResNet作为主干特征提取网络,借鉴U-net“编码-解码”和优化网络结构特征层等方法,提出一种用于隧道衬砌裂缝检测的FC-ResNet算法,实现对衬砌裂缝的像素级分割。为验证本算法的有效性和可靠性,采用CrackSegNet和U-net进行对比验证。结果表明:该算法的检测性能表现优异,测试集的像素准确率、平均交并比及F1-score分别为99.2%、87.4%、0.87,均优于CrackSegNet和U-net,且该算法的单张图片检测时间为122 ms,优于CrackSegNet,与模型结构简洁的U-net基本持平。基于提出的FCResNet算法开发隧道衬砌裂缝智能识别系统,实现对实际隧道工程衬砌裂缝准确、快速的智能化识别。
To improve the detection accuracy and efficiency of cracks during regular tunnel inspections,this study proposes an FC-ResNet algorithm for tunnel lining crack detection by using ResNet as the backbone feature extraction network,incorporating U-net's"encoder-decoder"structure and optimizing network feature layers.The algorithm achieves pixel-level segmentation of lining cracks.To verify its effectiveness and reliability,a comparative validation was conducted using CrackSegNet and U-net.The results show that the proposed algorithm demonstrates excellent detection performance,with a pixel accuracy,mean Intersection over Union(mIoU),and F1-score of 99.2%,87.4%,and 0.87,respectively,on the test set.These results are superior to those of CrackSegNet and U-net,and the detection time per image is 122 ms,better than CrackSegNet and comparable to the simpler U-net.Based on the FC-ResNet algorithm,an intelligent recognition system for tunnel lining cracks was developed,enabling accurate and fast intelligent recognition of cracks in actual tunnel engineering linings.
作者
韩凤岩
李慧臻
杨少君
甘帆
肖勇卓
HAN Fengyan;LI Huizhen;YANG Shaojun;GAN Fan;XIAO Yongzhuo(School of Civil Engineering,Central South University,Changsha 410075;China Railway Group Limited,Beijing 100039;China Railway Communications Investment Croup Co.,Ltd,Nanning 530219)
出处
《现代隧道技术》
CSCD
北大核心
2024年第5期111-119,共9页
Modern Tunnelling Technology
基金
国家自然科学基金(U1734208).
关键词
隧道工程
裂缝分割
深度学习
全卷积网络
残差网络
Tunnel engineering
Crack segmentation
Deep learning
Fully convolutional network
Residual network