摘要
张衡一号卫星在轨六年积累了大量的闪电哨声波(Lightning Whistlers,LWs)事件,这些事件是全面研究空间物理环境和圈层耦合机理的重要媒介.依靠目前的智能算法完成LWs识别任务需要几十年的时间,难以满足实际工程需要.本文提出了一种快速高效的闪电哨声波自动识别算法(Light Weight Network for Lightning Whistler,LW-LWNet):首先,采用深度可分离卷积、挤压激励机制等轻量化技术对YOLOv5目标检测算法的主干网络进行改进,通过降低参数量和计算量,提高了模型推理速度;其次,采用小计算量的注意力机制改进主干网络的输出通道,通过增强闪电哨声波形态特征,克服因参数压缩导致性能下降的问题;最后,通过训练得到本文提出的LW-LWNet模型.在2019年9月的LWs数据集上进行的实验表明,LW-LWNet模型在精确度、召回率、准确率和F1分别达到了88.8%、80.6%、89.8%和89.3%,相对于原始算法提高了0.7%、0.9%、0.4%和0.6%.此外,在轻量化方面,该模型的参数量减少了57%;在推理速度方面,FPS提升33%;在检测精度方面,mAP50提升了0.3%.
ZH-1 satellite has accumulated substantial data of Lightning Whistlers (LWs) over its six years in orbit, serving as crucial tools for comprehensive study of the space physical environment and inter-layer coupling mechanisms. However, the current algorithms require decades to identify LWs, which is impractical for engineering applications. To address this, we propose a fast and efficient Lightweight Network(LW-LWNet)for detecting lightning whistlers. Our approach utilizes lightweight technologies such as depth-separable convolution and squeeze excitation mechanism to enhance the backbone network of YOLOv5 target detection algorithm. This reduces parameters and computational complexity, thereby improving inference speed. Additionally, we employ a small computational attention mechanism to improve the backbone network's output channels, highlighting the characteristics of lightning whistle waves and mitigating performance degradation due to parameter compression. The LW-LWNet model was trained and evaluated on LW datasets from September 2019, achieving an accuracy of 88.8%, a recall of 80.6%, a precision of 89.8%, and an F1 score 89.3%. These results represent improvements of 0.7%, 0.9%, 0.4%, and 0.6% respectively over the original algorithm. Furthermore, the model's parameters were reduced by 57%, inference speed (FPS) increased by 33%, and detection accuracy (mAP50) improved by 0.3%. Experiments demonstrate that the LW-LWNet model not only enhances recognition accuracy but also significantly boosts inference speed, offering an effective reference for exploring the temporal and spatial distribution of global lightning whistlers.
作者
赵晨旭
袁静
王桥
申旭辉
泽仁志玛
刘庆杰
黄建平
刘祖阳
刘海军
ZHAO ChenXu;YUAN Jing;WANG Qiao;SHEN XuHui;Zeren ZhiMa;LIU QingJie;HUANG JianPing;LIU ZuYang;LIU HaiJun(Institute of Disaster Prevention,Langfang Hebei 065201,China;Institute of Geophysics,China Earthquake Administration,Beijing 100081,China;National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China;National Institute of Natural Hazards,Ministry of Emergency Management of China,Beijing 100085,China;Hubei University,Wuhan 430062,China)
出处
《地球物理学报》
SCIE
EI
CAS
CSCD
北大核心
2024年第11期4089-4104,共16页
Chinese Journal of Geophysics
基金
河北省教育厅科学研究项目(ZC2024028)
国家自然科学基金青年基金(42104159)资助。