期刊文献+

Convergence Analysis of Kernel Learning FBSDE Filter

原文传递
导出
摘要 Kernel learning forward backward stochastic differential equations(FBSDE)filter is an iterative and adaptive meshfree approach to solve the non-linear filtering problem.It builds from forward backward SDE for Fokker-Planker equation,which defines evolving density for the state variable,and employs kernel density estimation(KDE)to approximate density.This algo-rithm has shown more superior performance than mainstream particle filter method,in both convergence speed and efficiency of solving high dimension problems.However,this method has only been shown to converge empirically.In this paper,we present a rigorous analysis to demonstrate its local and global convergence,and provide theoretical support for its empirical results.
出处 《Communications in Mathematical Research》 CSCD 2024年第3期313-342,共30页 数学研究通讯(英文版)
基金 supported by the U.S.National Science Foundation through Project DMS-2142672 by the U.S.Department of Energy,Office of Science,Office of Advanced Scientific Computing Research,Applied Mathematics Program under Grant DE-SC0022297.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部