摘要
为了构建基于机器学习算法的大学生创新能力预测模型,实现对创新能力的评价和预测,通过收集大学生在课程学习、学科竞赛、论文发表和实践创新等多方面的数据,结合随机森林算法进行集成学习,综合考虑多维度数据并提取关键特征,形成了创新能力分类评价和预测模型。经过训练,该模型展现出良好的预测性能,实验结果表明其具有较高的准确性和稳定性。不仅为大学生创新能力的评价和预测提供了新的思路和方法,还有助于推动创新能力培养工作的深入发展,为高校教育创新提供有力支持。
In order to construct a prediction model for college students’innovation ability based on machine learning algorithms,and to evaluate and predict their innovation ability,data from various aspects such as course learning,subject competitions,paper publishing,and practical innovation are collected,and combined with the random forest algorithm for ensemble learning,a classification evaluation and prediction model for innovation ability is formed by comprehensively considering multidimensional data and extracting key features.After training,the model demonstrates good predictive performance,and experimental results show that it has high accuracy and stability.It not only provides new ideas and methods for evaluating and predicting the innovation ability of college students,but also helps to promote the in-depth development of innovation ability training and provides strong support for innovation in higher education.
作者
李红岩
李寅生
张瑞
LI Hongyan;LI Yinsheng;ZHANG Rui(School of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China)
出处
《电子质量》
2024年第10期55-59,共5页
Electronics Quality
基金
2023年河南省高等教育研究性教学改革研究与实践项目“基于研究性教学的微机原理及应用课程教学模式构建与实施路径探索”(教高〔2023〕388号)
河南工业大学2023年度教育教学改革研究与实践项目“微机原理及应用”研究性教学模式研究与实践(JXYJ2023011)
2023年河南省本科高校产教融合研究项目“面向电子信息产业的产教融合四位一体化双创平台研究与实践”资助。
关键词
大学生创新能力
预测模型
随机森林
机器学习
innovation ability of college students
prediction model
random forest
machine learning