摘要
本文提出了一种基于智能体间相互作用的MARL学习框架,称为IC,以解决MARL中稀疏奖励环境导致智能体产生冲突的问题。IC的主要功能是根据智能体间的高斯核函数大小赋予不同的值,计算出智能体的影响矩阵,并将影响矩阵的核范数作为额外奖励引入到目标函数中,以提高智能体探索性能以及团队之间的协作能力。实验结果表明,IC可以显著提高智能体间的协作能力,并在稀疏奖励环境中加速智能体对最优策略的学习。这是首次在MARL中尝试利用智能体之间的相互影响来促进智能体的探索能力。
This article proposes a MARL learning framework based on the interaction between agents,called IC,to solve the problem of conflicts between agents caused by sparse reward environments in MARL.The main function of IC is to assign different values based on the Gaussian kernel function size between agents,calculate the influence matrix of agents,and introduce the kernel norm of the influence matrix as an additional reward into the objective function to improve the exploration performance of agents and the collaboration ability between teams.The experimental results indicate that IC can significantly improve the collaboration ability between agents and accelerate their learning of optimal strategies in a sparse reward environment.This is the first attempt in MARL to utilize the mutual influence between agents to promote their exploration ability.
作者
赵花蕊
ZHAO Huarui(Platform Economy Development Guidance Center of Henan Province,Zhengzhou 450008,China)
出处
《智能计算机与应用》
2024年第10期56-62,共7页
Intelligent Computer and Applications
基金
国家自然科学基金(61972092)。
关键词
多智能体强化学习
稀疏奖励
奖励冲突
高斯核函数
核范数
multi-agent reinforcement learning
sparse reward
reward conflict
Gaussian kernel function
kernel norm