摘要
文章研究了基于Transformer模型的中文文本生成方法,重点探讨了Transformer模型的编码器-解码器结构及其工作原理。在详细分析了编码器和解码器的工作机制后,文章利用Hugging Face Transformers开源模型进行了中文文本生成实验。结果表明,该方法在自制数据集上取得了良好的效果,其准确率、精确率和召回率分别达到92.5%、91.8%和90.6%。该研究不仅拓展了中文自然语言处理的理论基础,还为实际应用提供了高效的技术支持。
This paper studies the Chinese text generation method based on the Transformer model,focusing on the Transformer model encoder-decoder structure and its working principle.After analyzing the working mechanism of the encoder and decoder in detail,this paper uses the Hugging Face Transformers open source model to conduct Chinese text generation experiments.The experimental results show that the proposed method achieves good performance on the self-made dataset,and its accuracy,precision and recall rates reaching 92.5%,91.8%and 90.6%respectively.The research in this paper not only expands the theoretical basis of Chinese natural language processing,but also provides efficient technical support for practical applications.
作者
王晓峰
WANG Xiaofeng(Wuxi Vocational and Technical Higher School of Automobile&Engineering,Wuxi 214000,China)
出处
《无线互联科技》
2024年第20期44-46,共3页
Wireless Internet Science and Technology