摘要
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。
With the large-scale commissioning of UHV AC and DC converter stations in China,the on-load tap changer(OLTC)has become one of the devices with more faults in UHV converter stations.To address the problem of difficult extraction of OLTC fault features in UHV converter stations in a high background noise environment,this paper proposes a method based on an adaptive particle swarm algorithm to optimize singular spectrum and singular value decomposition.First,the modal parameters in the singular spectrum decomposition algorithm are optimized using the APSO algorithm,and the optimal number of decomposition modes is selected.Secondly,the optimal singular spectrum components are selected based on the maximum cliff criterion.Then,the optimal reconstruction order is determined,and the signal is reconstructed by singular value decomposition,so as to achieve the purpose of signal noise reduction.Applying the proposed method to the simulated and experimental signals,the results show that the proposed method achieves a signal-to-noise ratio of 23.302,the root-mean-square error is only 0.004,and the waveform similarity parameter is as high as 0.998.This is better than other noise reduction methods.The method proposed can more effectively achieve the noise reduction of OLTC vibration signals in UHV converter stations,and provides a reference for auxiliary operation and maintenance personnel to diagnose the OLTC status.
作者
骆钊
张涛
阮彦俊
石延辉
林铭良
张杨
LUO Zhao;ZHANG Tao;RUAN Yanjun;SHI Yanhui;LIN Mingliang;ZHANG Yang(School of Electric Power Engineering,Kunming University of Science and Technology,Kunming 650500,China;Guangzhou Bureau of EHV Power Transmission Company,China Southern Power Grid Co.,Ltd.,Guangzhou 510000,China)
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2024年第21期13-23,共11页
Power System Protection and Control
基金
国家自然科学基金项目资助(52277104)
国家重点研发计划项目资助(2022YFB2703500)
云南省重点研发计划项目资助(202303AC100003)
中国南方电网广州超高压有限责任公司科技项目资助(0101002022030301SB00054)。
关键词
有载分接开关
自适应粒子群优化算法
奇异谱分解
奇异值分解
精细复合多尺度散布熵
信号降噪
on-load tap-changer(OLTC)
adaptive particle swarm optimization(APSO)
singular spectral decomposition(SSD)
singular value decomposition(SVD)
refined composite multi-scale dispersion entropy(RCMDE)
signal noise reduction