摘要
为了提高拼车需求预测的准确性,提高网约车拼车服务效率,进一步有效缓解交通拥堵问题,该文利用时间特征提取和Kepler优化算法对传统的决策树机器学习模型进行优化,提出了一种区域拼车概率预测模型。基于芝加哥网约车拼车概率数据集进行拼车需求预测的实验,将该模型与传统决策树模型进行比较。结果表明:优化后的模型在预测精度方面优于传统决策树模型,平均绝对误差(MAE)降低了0.044,均方根误差(RMSE)降低了0.054。优化后的模型相较于传统决策树模型在预测拼车需求方面具有更高的准确性。
In order to improve the accuracy of carpooling demand prediction,thereby enhancing the efficiency of ride hailing services and effectively alleviating traffic congestion,a regional carpooling probability prediction model was proposed by optimizing the traditional decision tree machine learning model using time feature extraction and Kepler optimization algorithm.An experiment was conducted to predict carpooling demand based on the Chicago ride hailing probability dataset,and the model was compared with traditional decision tree models.The experimental results show that the optimized model outperforms traditional decision tree models in terms of prediction accuracy,with a decrease of 0.044 in mean absolute error(MAE)and 0.054 in root mean squared error(RMSE).The optimized model has higher accuracy in predicting carpooling demand compared to traditional decision tree models.
作者
王迪
李颖
胡宇娇
孙昊程
WANG Di;LI Ying;HU Yujiao;SUN Haocheng(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出处
《汽车安全与节能学报》
CAS
CSCD
北大核心
2024年第5期723-731,共9页
Journal of Automotive Safety and Energy
基金
陕西省重点研发计划项目(2024GX-YBXM-002)。
关键词
共享出行
拼车需求
机器学习
决策树
Kepler优化算法
shared mobility
carpooling demand
machine learning
decision tree
Kepler optimization algorithm