期刊文献+

基于深度强化学习的异构融合网络接入算法

Heterogeneous Converged Network Access Algorithm Based on Deep Reinforcement Learning
下载PDF
导出
摘要 随着空、天、地各域通信网络的日趋成熟,跨域异构融合技术已成为未来通信网络一体化发展的重要方向。文中在空天地一体化网络向跨域异构融合需求的驱动下,针对异构网络中频谱资源利用率较低的问题,采用深度强化学习方法,通过建立异构融合网络系统模型,设计具有公平尺度的智能体接入算法,以系统吞吐量为最大化目标,选取符合空天地一体化特征的各通信网络制式并提取对应的接入协议。遵照公平原则,设置无量纲的信道参数,建立仿真场景。在仿真中引入多种对比策略,统计系统吞吐量、碰撞率、利用率和信道选择比例等指标。仿真结果表明,跨域异构融合网络的系统吞吐量提高了60%以上,系统信道利用效率提升了20%,业务分组碰撞率维持在10%,验证了文中算法对不同业务场景的适应性。 With the increasingly mature communication networks in the fields of air,space and ground,cross-domain heterogeneous converged technology has become an important direction for the integrated development of future communication networks.Driven by the demand for cross-domain heterogeneous in the converged network of air,space and ground,this study aims to solve the problem of low spectrum resource utilization in heterogeneous networks.It uses deep reinforcement learning method to establish a heterogeneous converged network system model and designs intelligent agent access algorithm with fair scale.The system throughput is selected as the maximization objective.The communication network standards that meet the characteristics of air,space and ground integration are selected and corresponding access protocols are extracted.Non-dimensional channel parameters are set according to the principle of fairness and simulation scenarios are established.Multiple comparison strategies are introduced in the simulation to statistically analyze system throughput,collision rate,utilization rate and channel selection ratio.The simulation results show that the system throughput of cross-domain heterogeneous fusion network is increased by more than 60%,system channel utilization efficiency is increased by 20%,and the collision rate of service packets is maintained at 10%,which verifies the adaptability of the algorithm to different business scenarios.
作者 肖雄 刘鸿雁 衣孟杰 XIAO Xiong;LIU Hongyan;YI Mengjie(School of Telecommunications Engineering,Xidian University,Xi′an 710071,China;School of Cyber Engineering,Xidian University,Xi′an 710126,China)
出处 《电子科技》 2024年第11期7-12,共6页 Electronic Science and Technology
基金 国家自然科学基金(42127802)。
关键词 异构融合网络 空天地一体化 深度强化学习 频谱利用率 接入协议 公平尺度 无量纲 系统吞吐量 heterogeneous converged network air,space and ground integration deep reinforcement learning spectrum utilization rate access protoco fair scale dimensioning system throughput
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部