摘要
核电数字孪生模型与实际机组的同步运行,是核电安全运行的重要保证。以核电蒸汽系统的数字孪生模型为研究对象,通过5层全连接神经网络实现蒸汽系统代理模型的构建,然后采用智能优化算法对代理模型进行参数优化以实现数字孪生模型与实际机组的自动同步,最后提出了智能优化算法的改进方案并进行了应用验证。结果表明代理模型能够达到数字孪生模型精度的99.99%,调用速度提高了5倍,智能优化算法的寻优结果优于人工调试结果,同时改进方案能够有效提升寻优精度,自动化同步效果显著。
The synchronous operation of the digital twin model of nuclear power and the actual unit is an important guarantee for the safe operation of nuclear power.Taking the digital twin model of nuclear power steam system as the research object,the proxy model of steam system was constructed by constructing a five-layer fully connected neural network,and then the intelligent optimization algorithm was used to optimize the parameters of the proxy model to realize the automatic synchronization of the digital twin model with the actual unit,and finally an improvement scheme of the intelligent optimization algorithm was proposed and its application was verified.The results show that the proxy model can reach 99.99% of the accuracy of the digital twin model,the call speed is increased by 5 times,the optimization results of the intelligent optimization algorithm are better than the manual debugging results,the improved scheme can effectively improve the optimization accuracy,and the automatic synchronization effect is remarkable.
作者
刘浩
肖云龙
肖焱山
曾祥云
郑胜
LIU Hao;XIAO Yun-long;XIAO Yan-shan;ZENG Xiang-yun;ZHENG Sheng(College of Science,China Three Gorges University,Yichang 443002,China;China Nuclear Power Operation Technology Corporation,Wuhan 430070,China)
出处
《科学技术与工程》
北大核心
2024年第29期12576-12583,共8页
Science Technology and Engineering
基金
国家自然科学基金(U2031202,12203029)。
关键词
数字孪生
自动同步
深度学习
智能优化
digital twins
automatic synchronization
deep learning
intelligent optimization