摘要
高压开关柜是电力系统中的关键设备,其故障识别对于确保电力系统的安全稳定运行至关重要。文章提出了一种多源传感器辅助的高压开关柜应急处置装置故障自动辨识技术。利用双目视觉、红外及局部放电传感器对开关柜的故障进行综合检测和辨识,结合数据融合算法和机器学习方法,提高故障识别的准确性和实时性。试验结果表明,该技术能够有效识别开关柜的多种故障类型,为电力系统的维护和应急处置提供可靠的技术支持。
High voltage switchgear is a key equipment in the power system,and its fault identification is crucial for ensuring the safe and stable operation of the power system.This article proposes an automatic fault identification technology for high﹣voltage switchgear emergency response devices assisted by multiple sensors.Using binocular vision,infrared,and partial discharge sensors to comprehensively detect and identify faults in switchgear,combined with data fusion algorithms and machine learning methods,to improve the accuracy and real﹣time performance of fault identification.The experimental results show that this technology can effectively identify multiple types of faults in switchgear,providing reliable technical support for the maintenance and emergency response of power systems.
作者
曹忺
朱振武
高浦润
CAO Xian;ZHU Zhenwu;GAO Purun
出处
《电力系统装备》
2024年第10期122-124,共3页
Electric Power System Equipment
关键词
高压开关柜
多源传感器
故障辨识
机器学习
high voltage switch cabinet
multi﹣source sensor
fault identification
machine learning