期刊文献+

微腔激子极化激元的自旋轨道耦合效应

Spin‒Orbit Coupling Effect of Microcavity Exciton Polaritons
原文传递
导出
摘要 光学微腔中的偏振劈裂效应作为一种等效光子规范场,可引发光子自旋轨道耦合机制,对微腔光子的能带结构、自旋分布和动力学行为产生独特的影响。尤其是在微腔光子与激子发生强耦合的物理体系内,基于光子自旋轨道耦合效应对微腔激子极化激元进行调控展现出了更大的自由度和多样化特征。此外,外加磁场、各向异性激子材料、束缚性和周期性势场等都会引入新类型的等效规范场,产生一系列全新的光子自旋轨道耦合机制与现象。上述成果为微纳光子器件和光量子模拟器等提供了丰富的理论方法与应用平台。 Significance One of the significant challenges in photonics is the on-chip integration of all-optical control,for which polaritonic fluids offer a promising solution.Polaritons enable the condensation of polaritons,which transforms a two-dimensional dilute photon gas into a high-density,highly coherent optical fluid with nonlinear interactions.Throughout the condensation process,the lifetime and coherence of polaritons improve significantly,thus facilitating the observation of their trajectories and the temporal evolution of their spin states.Furthermore,injecting photons with specific spin and momentum into microcavities via resonant excitation allows targeted investigation of photon transport and evolution processes,thereby realizing phenomena such as photonic topological insulators and the Hall effect.Progress In this paper,we systematically summarize studies pertaining to the spin‒orbit coupling effects of photons and excitons in Fabry‒Perot(F‒P)optical microcavities.Initially introduced in electronic systems,the concept of spin‒orbit coupling has been extended to cold atoms,free space,surface plasmons,metasurfaces,and finally to cavity polaritons.The second section briefly introduces F‒P optical microcavities and exciton polaritons.Subsequently,the third section focuses on the fundamental principles of TE‒TM mode splitting in microcavities,which generates an equivalent photon magnetic field,and summarizes a series of research advances pertaining to spin‒orbit coupling effects induced thereby.Subsequently,recent spin‒orbit coupling mechanisms are detailed,including those induced by external magnetic fields breaking time-reversal symmetry,material anisotropy,and their combined modulation with magnetic fields.These mechanisms yield diverse effective gauge fields corresponding to different photon physical processes and applications.An external magnetic field enhances the oscillator strength of excitonic components in polaritons,thus resulting in Zeeman splitting and breaking time-reversal symmetry;consequently,chiral symmetry breaking is realized via TE‒TM mode splitting.By contrast,anisotropy-induced Zeeman splitting in materials preserves time-reversal symmetry,thus resulting in emergent optical activity.In such microcavity systems,emergent optical activity,TE‒TM mode splitting,and linear birefringence from material anisotropy combine to form an effective photon gauge field.The subsequent section discusses the spin‒orbit coupling of polaritons in potential fields partitioned into confined potential fields,such as open microcavities.Notably,tunable open F‒P optical microcavity systems developed in recent years utilize concave and planar mirrors,thus facilitating their integration with emissive materials and realizing the dual tunability of resonance frequency and spatial position.Compared with two-dimensional photons in planar microcavities,confinement potential fields introduce orbital angular momentum,thus generating optical modes such as LG modes and the polar distributions of spin vortices.TE‒TM mode splitting in bound potential fields is coupled with photon spin,thereby resulting in the spin‒orbit coupling of photons and numerous new physical phenomena.The second section discusses periodic potential fields based on photonic-crystal topological insulators,which control polariton wave functions via spatially periodic optical structures in microcavities.Conclusions and Prospects The spin‒orbit coupling of polaritons in microcavities is affected by several key factors.First,the intrinsic TE‒TM mode splitting within the microcavity creates an effective photon magnetic field.Second,the applied magnetic fields induce Zeeman splitting in polariton excitonic components,thus breaking time-reversal symmetry.Material anisotropy further complicates spin‒orbit coupling by varying the photon gauge field.Additionally,confining and periodic potential fields within microcavities are crucial for manipulating spin‒orbit coupling,which can generate novel photon gauge fields.These factors collectively result in the complex behavior of spin‒orbit coupling in microcavity polaritons,thus offering abundant possibilities for on-chip optical systems.Notably,strong nonlinear interactions of polaritons enable all-optical manipulation of spin‒orbit coupling effects on-chip.Concentration gradients induce effective photon gauge fields that affect spin‒orbit coupling,thereby altering the system's Hamiltonian.Thus,the spatial modulation of pump light intensity enables the on-chip control of spin‒orbit coupling effects.After polariton condensation,the dissipation rates and concentrated energy are reduced,which can modify the original non-Hermitian system,thus potentially altering or eliminating singular points and achieving non-Hermitian properties in on-chip optical control systems.
作者 龙腾 李一鸣 罗筱璇 廖清 李峰 Long Teng;Li Yiming;Luo Xiaoxuan;Liao Qing;Li Feng(Beijing Key Laboratory for Optical Materials and Photonic Devices,Capital Normal University,Beijing 100048,China;Key Laboratory for Physical Electronics and Devices of the Ministry of Education,School of Electronic Science and Engineering,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China;School of Air Defence and Anti-Missile,Air Force Engineering University,Xi’an 710051,Shaanxi,China;School of Information,Xi’an University of Finance and Economics,Xi’an 710100,Shaanxi,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2024年第18期257-270,共14页 Chinese Journal of Lasers
基金 国家自然科学基金(22150005,12074303) 国家重点研发计划(2018YFA0704805,2023YFA1407100) 北京市自然科学基金(KZ202110028043) 陕西省科技创新团队项目(2021TD-56)。
关键词 微腔光子学 激子极化激元 自旋轨道耦合 光子规范场 microcavity photonics exciton polariton spin‒orbit coupling photon gauge field
  • 相关文献

参考文献10

二级参考文献80

  • 1Kato Y K;Myers R C;Gossard A C.查看详情[J],Science20041910.
  • 2Qi X L;Zhang S C.查看详情[J],Physics Today201033.
  • 3Onoda M;Murakami S;Nagaosa N.查看详情[J],Physical Review Letters2004083901.
  • 4Hosten O;Kwiat PG.查看详情[J],Science2008787.
  • 5Bliokh K Y;Niv A;Kleiner V.查看详情[J],Nature Photonics2008748.
  • 6Nori F.查看详情[J],Nature Photonics2008716.
  • 7Resch K J.查看详情[J],Science2008733.
  • 8Fedorov F I.查看详情[J],Doklady Akademii Nauk SSSR1955465.
  • 9Imbert C.查看详情[J],Physical Review D19724.
  • 10Aharonov Y;Albert D Z;Vaidman L.查看详情[J],Physical Review Letters19881351.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部