摘要
在基于深度学习的合成孔径雷达(SAR)图像舰船检测领域,传统的模型通常结构复杂、计算量大,难以适配低算力平台并实现实时检测;同时,依赖于预设锚框的卷积神经网络因锚框位置较难合理设置,容易导致大量计算冗余。针对上述问题,提出一种基于无锚框的端到端轻量化卷积神经网络,设计了一种轻量的通道注意力模块(EESE)并将其应用于解耦合检测头(ED-head)上,有效解决了分类和定位2种任务的冲突。此外,提出一种优化的EIOU损失函数,在保证推理速度几乎不变的情况下有效提升网络性能。在SSDD数据集上的实验结果表明:与YOLOX-nano相比,该方法的AP50和AP分别提高2.1和7.4个百分点,在CPU上推理延迟仅5.33 ms,远小于YOLOX-nano的13.13 ms,实现了精度与效率的平衡。
In the field of SAR image ship detection based on deep learning,traditional models are usually complex in structure and require a large amount of calculation,making them unsuitable for low computing power platforms and real-time detection.And convolutional neural networks that rely on preset anchor boxes will lead to a lot of computational redundancy due to the difficulty of setting a reasonable anchor box.To solve these problems,an end-to-end lightweight convolutional neural network based on anchor-free design is proposed,and a lightweight channel attention module(EESE)is designed and applied to the detection head(ED-head),to resolve the conflict between classification and localization tasks.In addition,an optimized EIOU loss function is proposed,which enables the model to effectively improve the network performance without increasing the inference time.The proposed method is tested on the SSDD dataset,and the experimental results show that compared to YOLOX-nano,AP 50 and AP are increased by 2.1 and 7.4 percentage points,respectively,with the CPU latency being only 5.33 ms,much less than 13.13 ms of YOLOX-nano.,and the speed is more than twice as fast as YOLOX-nano.The proposed method achieves a balance between accuracy and efficiency.
作者
周文雪
张华春
ZHOU Wenxue;ZHANG Huachun(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100190,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《中国科学院大学学报(中英文)》
CAS
CSCD
北大核心
2024年第6期776-785,共10页
Journal of University of Chinese Academy of Sciences
基金
国家自然科学基金(61901445)
北京市自然科学基金(4192065)资助。