期刊文献+

基于BiLSTM-CRF的航行通告命名实体识别研究

Study on Named Entity Recognition of NOTAM Based on BiLSTM-CRF
下载PDF
导出
摘要 针对当前国际民航组织对数字航行通告研究仅考虑对文本航行通告环境兼容,而未考虑对数字航行通告环境兼容的问题,提出一种基于BiLSTM-CRF的航行通告命名实体识别模型,以实现文本航行通告中相关实体的自动识别,并为转换数字航行通告提供所需的基本数据。通过构建航行通告语料标记数据集对LSTM,BiLSTM,BiLSTM-CRF 3种模型进行对比实验。实验结果显示,所提模型的精确率、召回率、F 1值分别为95%,95%,95%,验证了其在航行通告领域的有效性,证明本研究可以有效识别航行通告中的重要实体信息。 Aiming at the problem that the current research of International Civil Aviation Organization in digital NOTAMs,which only considers the compatibility with the environment of textual NOTAMs,but not digital NOTAMs,a named entity recognition model for NOTAMs based on BiLSTM-CRF is proposed to realise the automatic recognition of relevant entities in textual NOTAMs and to provide the necessary basic data for the conversion of digital NOTAMs.Comparative experiments are carried out by constructing a NOTAM corpus tagged dataset in three models,LSTM,BiLSTM and BiLSTM-CRF,and the experimental results show that the precision,recall and F1 value of the proposed method is 95%,95%and 95%,respectively,which verifies the effectiveness of the proposed method in the field of NOTAMs and proves that this study can effectively obtain the important entity information in NOTAMs.
作者 项恒 杨明友 李猛 XIANG Heng;YANG Mingyou;LI Meng(College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机科学》 CSCD 北大核心 2024年第S02期115-120,共6页 Computer Science
基金 国家自然科学基金(U1833103).
关键词 航行通告 命名实体识别 深度学习 双向长短期记忆网路 条件随机场 NOTAM Name entity recognition Deep learning BiLSTM CRF
  • 相关文献

参考文献7

二级参考文献52

  • 1王小文,黄琰.事件驱动的航行通告数字化建模和编码方法[J].信息化研究,2020,46(3):5-12. 被引量:4
  • 2张晓艳,王挺,陈火旺.命名实体识别研究[J].计算机科学,2005,32(4):44-48. 被引量:67
  • 3俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:160
  • 4Wikipedia:Message Understanding Conference[EB/OL].2013-12-27.http://en.wikipedia.org/wiki/Message_Understanding_Conference.
  • 5Wikipedia:Named Entity Recognition[EB/OL].2013-12-28.http://en.wikipedia.org/wiki/Named_Entity_Recognition.
  • 6Rizzo G,Troncy R.NERD:Evaluating Named Entity Recognition Toolsinthe Web of Data[J].Lecture Notesin Computer Science,2012(7295):39-55.
  • 7Rizzo G,Troncy R.NERD:A Framework for Unifying Named Entity Recognition and Disam biguation Extraction Tools[C]∥13th Conference ofthe European Chapter of the Association for ComputationalL inguistics.2012:73-76.
  • 8Li Chen-liang,Weng Jian-shu.TwiNER:Named Entity Recognition in Targeted Twitter Stream[C]∥SIGIR.2012:721-730.
  • 9Liu Xiao-hua,Zhang Shao-dian,et al.Recognizing Named Entitiesin Tweets[C]∥ACL.2011:359-367.
  • 10Finin T,Murnane W.Annotating Named Entitiesin TwitterDatawith Crowdsourcing[C]∥ACL.2010.

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部