期刊文献+

基于改进Yolov8的敦煌壁画元素检测算法

Dunhuang Mural Element Detection Algorithm Based on Improved Yolov8
下载PDF
导出
摘要 敦煌壁画因其极高的艺术价值、历史价值、研究价值而备受关注。在壁画文创研发中,壁画元素检测扮演了一个十分重要的角色。但是,受到壁画脱落、颜料褪色、病虫害破坏、元素体量差异大等因素的影响,给壁画元素的检测工作带来了极大的困扰。为此,文中基于Yolov8算法进行了改进拓展工作并将其引入壁画元素的检测任务。具体来说,考虑到部分元素特征不明显的问题,设计了改进的SPPCSPC模块以增强模型的特征感知能力,扩大模型的感受野;考虑到元素体量差异巨大、元素风格多变的问题,在C2f模块末端引入CoordAtt注意力机制以增强网络对局部及非显著信息的关注能力。在敦煌壁画元素检测任务上,相比5项前沿检测算法,所提算法取得了先进的壁画原始检测性能。相比Yolov8基线算法取得了2.2%@mAP的性能提升,尤其是在main_buddha类别上提升了12.2%@mAP的检测性能。所提方法有效支撑了敦煌壁画的后续相关研究工作。 The Dunhuang murals have garnered significant attention for their artistic,historical,and research value.In the research and development of cultural tourism surrounding frescoes,detecting elements within these frescoes is crucial.However,due to factors such as shedding,pigment fading,pest damage,and the significant discrepancies in elemental volume,detecting mural elements has become difficult.For this reason,this paper,which is based on the Yolov8 algorithm,continues the improvement and expansion work by introducing it into the fresco element detection task.Specifically,the design of an enhanced SPPCSPC module improves the feature-perception ability of the model and expands its sensory field.Additionally,the CoordAttention mechanism is introduced at the end of the C2f module to improve the network’s ability to focus on local and non-significant information,which addresses the variability in volume and style of the elements.On the issue of detecting elements within Dunhuang murals,our algorithm outperforms five other cutting-edge detection algorithms in terms of mural detection accuracy.Compared to the Yolov8 baseline algorithm,it achieves a 2.2%improvement in mAP,particularly in the main_buddha category where we see a 12.2%improvement in detection accuracy.This accomplishment offers significant support for future research focused on Dunhuang murals analysis.
作者 周颜林 邬开俊 梅源 田彬 俞天秀 ZHOU Yanlin;WU Kaijun;MEI Yuan;TIAN Bin;YU Tianxiu(Lanzhou Jiaotong University,Lanzhou 730070,China;Dunhuang Academy,Dunhuang,Gansu 736200,China)
出处 《计算机科学》 CSCD 北大核心 2024年第S02期373-378,共6页 Computer Science
基金 甘肃省自然科学基金(23JRRA913)。
关键词 敦煌壁画 改进的Yolov8 目标检测 特征增强 Dunhuang murals Improved Yolov8 Target detection Feature enhancement
  • 相关文献

参考文献2

二级参考文献7

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部