摘要
为解决桥梁裂纹识别中不同裂纹的识别问题,提高模型的拟合能力,并提升裂纹的特征提取能力,提出了一种基于YOLOV5融合EfficientNet,引入CBAM注意力机制的桥梁裂纹识别的算法YOLOv5-Crack。首先,基于网络EfficientNet的高精度、高效性,替换YOLOv5的特征提取网络以提取裂纹特征;其次,将CBAM(Convolutional Block Attention Module)卷积块注意力模块与通道和空间注意力模块结合,以增强模型表达浅层目标特征信息的能力,提高了裂纹的识别精度;最后,在桥梁裂缝数据集Concrete Crack Images for Classification上训练。研究结果表明:在大型裂纹的识别能力上,YOLOv5-Crack检测识别精度高于YOLOv5,其mAP@0.5,Recall及Precision明显提高,而消耗的算力明显降低,能够满足裂纹的检测要求。
To address the issues of different crack recognition in bridge crack identification,improve the model’s fitting ability,and enhance crack feature extraction capability,this paper proposes an algorithm called YOLOv5-Crack based on the fusion of YOLOv5 and EfficientNet,incorporating the CBAM attention mechanism in bridge crack recognition.Firstly,the feature extraction network of YOLOv5 is replaced with the EfficientNet network known for its high accuracy and efficiency,to extract crack features.Secondly,the convolutional block attention module(CBAM)is used to enhance the model’s ability to capture the feature information of shallow targets by combining channel and spatial attention modules,thereby improving crack recognition accuracy.Finally,the model is trained on the bridge crack dataset“concrete crack images for classification”.The research results show that YOLOv5-Crack demonstrates higher accuracy in detecting large cracks compared to YOLOv5,with improved mAP@0.5,recall,and precision.Additionally,it consumes less computing power while meeting the requirements of crack detection.
作者
李军
刘念
张世义
LI Jun;LIU Nian;ZHANG Shiyi(School of Mechatronics and Vehicle Enginerring,Chongqing Jiaotong University,Chongqing 400074,China;School of shipping and Naval Architecture,Chongqing JiaotongUniversity,Chongqing 400074,China)
出处
《计算机科学》
CSCD
北大核心
2024年第S02期388-394,共7页
Computer Science
基金
国家自然科学基金(51305472)
城市轨道交通车辆系统集成与控制重庆市重点实验室基金项目。