期刊文献+

拟态防御中基于ANP-BP的执行体异构性量化方法

ANP-BP Based Executive Heterogeneity Quantification Method in Mimicry Defense
下载PDF
导出
摘要 基于动态异构冗余框架的拟态防御技术是一种主动防御技术,其利用非相似性、冗余性等特征阻断或扰乱网络攻击,以提高系统的可靠性和安全性,其中最大化执行体之间的异构性是提高拟态防御安全效益的关键。文中提出了一种基于网络层次分析法(ANP)和误差反向传播(BP)的执行体异构性量化方法,该方法通过收集和分析不同的异构性影响因素,建立一个多维度的特征矩阵,利用ANP方法综合考虑了各个维度之间的相互依赖关系,对不同维度的特征进行权重分配,同时利用BP神经网络解决ANP方法带来的主观性过强的问题。通过基于ANP-BP的异构性评估模型,能够快速准确有效地筛选出影响异构性最大的因素,为拟态防御执行体异构性评估提供科学依据和技术建议。 Mimicry defense technology based on dynamic heterogeneous redundancy framework is an active defense technology,which uses characteristics such as non-similarity and redundancy to block or disrupt network attacks to improve system reliability and security.The key to improve the security benefits of mimicry defense is to maximize the heterogeneity among executives.This paper proposes a quantitative method of executive heterogeneity based on network analytic hierarchy process(ANP)and back propagation of error(BP).By collecting and analyzing different influencing factors of heterogeneity,this method establishes a multi-dimensional feature matrix.The ANP method comprehensively considers the interdependence between various dimensions and assigns weights to features of different dimensions.At the same time,BP neural network is used to solve the problem that ANP method is too subjective.The isomerism evaluation model based on ANP-BP can quickly,accurately and effectively screen out the most influential factors of isomerism,and provide scientific basis and technical suggestions for the isomerism evaluation of mimicry defense executive.
作者 赵嘉 谷良 吴瑶 杜锋 ZHAO Jia;GU Liang;WU Yao;DU Feng(State Grid Shanxi Electric Power Company Information and Communication Branch,Taiyuan 030000,China)
出处 《计算机科学》 CSCD 北大核心 2024年第S02期943-948,共6页 Computer Science
基金 国网山西省电力公司科技项目(52051C220006)。
关键词 主动防御技术 拟态防御技术 异构性 网络分析方法 BP神经网络 Active defense technique Mimicry defense technology Heterogeneity Analytic network process BP neural network
  • 相关文献

参考文献13

二级参考文献77

共引文献564

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部