摘要
阐述复杂电磁环境下信号的快速智能检测技术。分析检测流程自动化设计、基于稀疏自编码神经网络的目标信号检测技术,自动提取信号深层特征,学习噪声的隐含结构规律,给出含噪信号与原始信号之间的复杂非线性映射关系,在降低噪声的同时较好地保持目标电磁信号。
This paper describes the rapid and intelligent detection technology of signals in complex electromagnetic environments.It analyzes the automation design of the detection process and the target signal detection technology based on sparse autoencoder neural network,automatically extracts deep features of the signal,learns the hidden structural rules of noise,and provides a complex nonlinear mapping relationship between the noisy signal and the original signal.It effectively reduces noise while maintaining the target electromagnetic signal.
作者
刘奇
张超
刘公政
张明
LIU Qi;ZHANG Chao;LIU Gongzheng;ZHANG Ming(CETC Ceyear Technoligies Co.,Ltd.,Shandong 266000,China;Shandong Electronic Measuring Instrument Technology Innovation Center,Shandong 266000,China)
出处
《电子技术(上海)》
2024年第8期22-23,共2页
Electronic Technology
基金
中国电子科技集团公司创新基金项目(KJ2202008)。
关键词
信号检测
神经网络
深度学习
signal detection
neural networks
deep learning