摘要
阐述采用深度学习技术、卷积神经网络(CNN)和支持向量机(SVM),对数据库中样本进行分类。通过CNN自动提取特征,利用粒子群优化算法优化SVM参数,实验结果显示模型的有效性。
This paper expounds the use of deep learning techniques,convolutional neural networks(CNN),and support vector machines(SVM)to classify samples in a database.By using CNN to automatically extract features and particle swarm optimization algorithm to optimize SvM parameters,the experimental results showthe effectiveness of the model.
作者
吴凯佳
WU Kajjia(Cancer Hospital of Shantou University Medical College,Guangdong 515041,China)
出处
《电子技术(上海)》
2024年第8期290-291,共2页
Electronic Technology
关键词
深度学习
医学图像
分类方法
deep learning
medical imaging
classification methods