期刊文献+

基于Attention机制优化GRU混合神经网络的配电网负荷预测模型应用

Distribution Network Load Forecasting Based on Attention-mechanism-optimized GRU Hybrid Neural Network
下载PDF
导出
摘要 随着全球能源需求的持续增长和环境保护意识的增强,配电网负荷预测成为电力系统运行和规划中的关键环节。为此提出了一种基于Attention机制优化的GRU混合神经网络模型,进一步提升配电网负荷预测的精度和鲁棒性。通过对传统GRU模型和引入Attention机制的GRU模型进行比较,表明带Attention机制的GRU模型在预测精度和稳定性方面表现更优。在公开数据集上的测试结果显示,带Attention机制的GRU模型显著降低了预测误差,提高了预测精度,为智能配电网的高效运行提供了有力支持。 The continuous growth of global energy demand and the increasing awareness of environmental protection have made load forecasting in distribution networks a crucial part in operation and planning of power systems.The present work made a preliminary attempt to establish an attention-mechanism-optimized GRU hybrid neural network model to improve accuracy and robustness of distribution network load forecasting.The proposed model was verified by a test on public database,compared with conventional GRU model,superior in forecasting accuracy and stability,and thereby potentially conducive to efficient operation of smart distribution networks.
作者 蒋军 JIANG Jun(State Grid Hunan Electric Power Co.,Ltd.Shaoyang Power Supply Branch,Shaoyang 422000,China)
出处 《电工技术》 2024年第19期23-25,28,共4页 Electric Engineering
关键词 配电网 负荷预测 GRU神经网络 Attention机制 深度学习 时间序列预测 distribution network load forecasting GRU neural network Attention mechanism deep learning time series forecasting
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部