期刊文献+

基于VIC和MLP-ANN模型重建中国陆地水储量数据

Reconstruction of terrestrial water storage data in China based on VIC and MLP-ANN models
下载PDF
导出
摘要 基于GRACE重力卫星的产品数据为大尺度的陆地水储量研究提供了重要支撑,但由于数据长度有限,无法满足长序列研究需求。基于气象和水文观测数据,利用可变下渗容量曲线(VIC)模型在中国十大水资源分区构建了流域水循环模型,基于模型输出的土壤水和雪水储量,并结合气象观测数据,构建了基于多层感知器的人工神经网络模型(MLP-ANN),重建了中国地区1980—2018年高分辨率(0.25°)的陆地水储量距平(TWSA)月尺度数据集,并利用2003—2018年的GRACE数据对重建的TWSA进行评估。结果表明:①VIC模型总体具有较好的模拟效果,且湿润流域的模拟精度优于半干旱流域;②重建的TWSA在空间分布上与GRACE数据高度一致,可以较好地捕捉到绝大部分流域TWSA的年际变化特征及趋势;③1980—2018年,TWSA在华北平原、辽东、松花江西部、西南及西北部分地区呈显著下降趋势(>5 mm/a),而显著上升趋势主要集中在西部的少部分地区(>20 mm/a)。重建的TWSA数据可为中国地区的水文气象研究提供数据支撑。 The product data based on GRACE gravity satellites provide important support for large-scale terrestrial water storage(TWS)research.However,these data cannot meet the needs of long-term sequence research because of the limited data length.Based on meteorological and hydrological observation data,a variable infiltration capability(VIC)model was constructed in the ten water resource zones in China.Based on the soil water and snow water storage output from the VIC model and meteorological observation data,an artificial neural network model based on a multilayer perceptron was developed to reconstruct a long-term(1980—2018),high-resolution(0.25°×0.25°)monthly TWS anomaly(TWSA)dataset in China.The reconstructed TWSA data were evaluated using GRACE data from 2003 to 2018.The results demonstrate the following:①The VIC model exhibits overall good simulation performance,with better performance in humid basins than in semi-arid basins.②The reconstructed TWSA dataset is highly consistent with the GRACE data at the spatial scale and can effectively capture interannual variations and evolution trends of the TWSA in most basins,especially in humid basins.③From 1980 to 2018,the TWSA exhibited a significant downward trend(>5 mm/a)in the North China Plain,Eastern Liaoning,Southern Songhua,and Southwest and Northwest parts of China,while a significant upward trend(>20 mm/a)was mainly concentrated in some regions of Western China.The TWSA data constructed can provide data support for hydrological and meteorological research in China.
作者 巨佳丽 武传号 胡晓农 龚郑洁 JU Jiali;WU Chuanhao;HU Xiaonong;GONG Zhengjie(School of Water Resources and Environment,China University of Geosciences(Beijing),Beijing 100083,China;The National Key Laboratory of Water Disaster Prevention,Hohai University,Nanjing 210098,China;Yangtze Institute for Conservation and Development,Hohai University,Nanjing 210098,China;School of Water Conservancy and Environment,Jinan University,Jinan 250022,China;College of Life Science and Technology,Jinan University,Guangzhou 510632,China)
出处 《水科学进展》 EI CAS CSCD 北大核心 2024年第5期711-725,共15页 Advances in Water Science
基金 国家自然科学基金资助项目(52279016) 中央高校基本科研业务费专项经费资助项目(B240201056)。
关键词 陆地水储量 GRACE VIC模型 人工神经网络 数据重建 十大水资源分区 terrestrial water storage GRACE VIC model artificial neural network data reconstruction ten water resource zones
  • 相关文献

参考文献14

二级参考文献129

共引文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部