期刊文献+

碳基材料对脂肪酸复合相变材料导热性能影响的研究进展 被引量:1

Research progress on effect of carbon-based materials on the thermal conductivity of fatty acid composite phase change materials
下载PDF
导出
摘要 为解决单一脂肪酸导热性差的应用缺点,并扩大其应用范围,综述了脂肪酸与不同碳基材料(石墨、碳纳米管、石墨烯类、碳纤维、生物基炭、石墨化碳泡沫)相结合制备复合相变材料对其导热性能的影响,并对不同碳基材料进行比较。与单一脂肪酸相比,脂肪酸碳基复合相变材料极大程度上提高了稳定性及导热性能,是解决单一脂肪酸应用问题的一种有效手段。在实际应用中,可根据需求挑选适宜的碳基材料来制备脂肪酸碳基复合相变材料。在未来仍需加深对脂肪酸碳基复合相变材料导热性能的研究,以确保碳基材料新应用的开发。 In order to solve the application drawbacks of poor thermal conductivity of single fatty acids and expand their application scope,the effects of combining fatty acids with different carbon-based materials(graphite,carbon nanotubes,graphene,carbon fibres,biobased carbon,graphitised carbon foams)in the preparation of composite phase change materials on their thermal conductivity were reviewed and compared.Compared with single fatty acids,the stability and thermal conductivity of fatty acid-carbon composite phase change materials are greatly improved,which is an effective means to solve the problem of single fatty acids applications.In practical applications,suitable carbon-based materials can be selected according to the needs of the preparation of fatty acid-carbon composite phase change materials.In the future,it is still necessary to deepen the research on the thermal conductivity of fatty acid carbon-based composite phase change materials to ensure the development of new applications of carbon-based materials.
作者 谷丰 王收 潘丽 GU Feng;WANG Shou;PAN Li(China Zhongyuan International Engineering Co.,Ltd.,Beijing 100089,China;College of Food Science and Engineering,Henan University of Technology,Zhengzhou 450001,China)
出处 《中国油脂》 CAS CSCD 北大核心 2024年第11期72-80,共9页 China Oils and Fats
基金 国家自然科学基金青年科学基金项目(32001738) 郑州市科技局自然科学项目(21ZZXTCX18) 河南工业大学青年骨干教师培育计划项目 省部级科研平台开放课题(GO202209)。
关键词 脂肪酸 相变材料 碳基材料 导热性能 fatty acid phase change materials carbon-based material thermal conductivity
  • 相关文献

参考文献3

二级参考文献26

  • 1P. Kim and L. Shi, A. Majumdar and P.L. McEuen: Phys. Rev. Lett., 2001, 87, 215502.
  • 2S. Berber, Y.K. Kwon and D. Tomanek: Phys. Rev. Lett., 2000, 84, 4613.
  • 3S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood and E.A. Grulke: Appl. Phys. Lett., 2001, 79, 2252.
  • 4M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson and J.E. Fischer: Appi. Phys. Lett, 2002, 80, 2767.
  • 5H.M. Duong, D.V. Papavassiliou, K.J. Mullen, B.L. Wardle and S. Maruyama: J. Phys. Chem. C, 2008, 112, 19860.
  • 6G. Vasilios, B. Athanasios, G.T.T. Dimitrios, T. Christos, M.A. Aurelio and P. Maurizio: J. Am. Chem. Soc., 2008, 130, 8733.
  • 7R. Haggenmueller, J.E. Fischer and K.I. Winey:Macromolecules, 2006, 39, 2964.
  • 8N. Levi, R. Czerw, S. Xing, P. lyer and L.D. Carroll: Nano Lett., 2004, 4, 1267.
  • 9G.X. Chen and H. Shimizu: Polymer, 2008, 49, 943.
  • 10T.X. Liu, I.Y. Phang, L. Shen, S.Y. Chow and W.D. Zhang: Macromolecules, 2004, 37, 7214.

共引文献9

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部