期刊文献+

基于传感云技术和改进压缩感知的物联网数据处理方法

Internet of things data processing based on sensor cloud and improved compressive sensing
下载PDF
导出
摘要 压缩感知通过稀疏采样技术,可以在远程客户端通过少量数据信息实现数据的重构,这给压缩感知和互联网结合提供了理论基础。针对传统压缩感知算法处理效率低和质量差的缺点,将曲波变换和图像分块理论引入压缩感知,提出一种基于传感云和改进压缩感知的物联网路数据处理架构。结果表明,通过无噪图像、加噪图像和不同采样频率对重构图像质量影响的研究发现,与SIDCT和PBDCT相比较,本文方法PB⁃DCT具有更强的抵抗噪声的能力,极大地提高传感网络的数据处理和数据存储能力。 Through sparse sampling,compressive sensing can reconstruct data through a small amount of data information on a remote client,which provides a theoretical basis for the combination of compressed sensing and the Internet.Aiming at the disadvantages of low efficiency and poor quality of traditional compressive sensing algorithm,the curved wave transform and image block theory were introduced into compressive sensing,and a data processing architecture for Internet of Things(IoT)based on sensor cloud and improved compressed sensing was proposed.The results showed that compared with SIDCT and PBDCT,the proposed method PBDCT had a stronger ability to resist noise,which greatly improves the data processing and data storage capabilities of the sensor network.
作者 曹纪磊 CAO Jilei(Henan Traffic Technician College,Zhumadian 463000,Henan China)
出处 《粘接》 CAS 2024年第11期163-166,共4页 Adhesion
基金 河南省教育厅课题(项目编号:ZJC17077)。
关键词 传感云 压缩感知 物联网 曲波变换 无线传感网络 sensor cloud compressive sensing internet of things curvelet transformation wireless sensor network
  • 相关文献

参考文献18

二级参考文献219

  • 1杨育彬,陈世福,林珲.一种基于颜色连通的图像纹理检索新方法[J].电子学报,2005,33(1):57-62. 被引量:16
  • 2谭学瑞,邓聚龙.灰色关联分析:多因素统计分析新方法[J].统计研究,1995,12(3):46-48. 被引量:334
  • 3廖瑞金,廖玉祥,杨丽君,王有元.多神经网络与证据理论融合的变压器故障综合诊断方法研究[J].中国电机工程学报,2006,26(3):119-124. 被引量:99
  • 4杨树莲.BP神经网络在齿轮箱故障诊断中的应用[J].机床与液压,2006(7):244-245. 被引量:14
  • 5Kong W W, Wang B H, Lei Y. Technique for infrared and visi- ble image fusion based on non-subsamp|ed shearlet transform and spiking cortical model[ J]. Infrared Physics & Technology,2015,71 (6) :87-98.
  • 6Xin Z, Xin Y, Rui A L, et al. Infrared and visible image fusion technology based on directionlets transfrom [ J ]. Journal on Wire- less Communications and Networking,2013,42 ( 1 ) : 1-4.
  • 7Parul A, Shabbir N. Merchant,et al. Muhifocus and multispectral image fusion based on pixel significance using multi resolution de- composition [ J ]. Verlag London Limited,2013, (7) : 95-109.
  • 8Yin H T. Sparse representation with learned muhiscale dictionary for image fusion[ J]. Neurocomputing,2015,148 (7) :600-610.
  • 9Yu L,Liu S P, Wang Z F. A general framework for image fusion based on multi scale transform and sparse representation [ J ]. In- formation Fusion,2015,24 ( 6 ) : 147 -164.
  • 10Vladimir P, Vladimir D. Focused pooling for image fusionevalua- tion[J]. Information Fusion,2015,22(3) :119-126.

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部