期刊文献+

基于高低频数据融合的非侵入式负荷监测系统设计与应用

Design and Application of a Non-intrusive Load Monitoring System Based on the Fusion of High-and Low-frequency Data
原文传递
导出
摘要 办公建筑的电气设备具有较大的节能空间,实现对办公建筑运行阶段中的电气设备的用电监测与管理有助于节能减排。目前传统的建筑设备管理无法实时有效监测设备的运行状态,因此本文提出了基于高-低频数据融合的事件检测方法和暂-稳态特征结合的设备识别方法,通过高频采样的方式采集高频数据和低频数据,以高频触发为主低频触发为辅的事件检测方式捕获设备投切时的电流序列,提取特征并完成设备识别。本文将建筑负荷监测系统应用于某高校实验室,实际应用效果表明:该方法有效提高了事件检测的准确率和实时性,进而帮助实时监测设备状态及能耗,实现用电精细化管理。 The electrical equipment in office buildings has significant potential for energy conservation.Implementing electricity monitoring and management of electrical equipment during the operational stage of office buildings contributes to energy conservation and emission reduction.Traditional building equipment management lacks real-time and effective monitoring of equipment operation status.Therefore,this paper proposed an event detection method based on high-and low-frequency data fusion and a device identification method combining transient-steady state characteristics.The high-frequency sampling method is used to collect high-and low-frequency data.The event detection method relies primarily on high-frequency triggering and secondarily on low-frequency triggering to capture the current sequence during equipment switching,extract features and perform equipment identification.The paper revealed the actual results of applying the building load monitoring system to a laboratory in a certain university:This method effectively improved the accuracy and timeliness of event detection,thereby assisting in real-time monitoring of equipment status and energy consumption,and achieving fine-grained management of electricity consumption.
作者 王保义 邓晓平 张桂青 阎俏 袁帅 WANG Baoyi;DENG Xiaoping;ZHANG Guiqing;YAN Qiao;YUAN Shuai(Shandong Jianzhu University,Jinan 250101,China;Shandong Key Laboratory of Intelligent Buildings Technology,Jinan 250101,China;Integrated Electronic Systems Lab Co.,Ltd.,Jinan 250100,China)
出处 《建筑科学》 CSCD 北大核心 2024年第10期62-69,142,共9页 Building Science
基金 山东省重点研发计划(重大科技创新工程)项目(2021CXGC011205)。
关键词 用电监测 设备管理 数据融合 事件检测 设备识别 electricity monitoring device management data fusion event detection device identification
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部