摘要
随着高比例分布式电源、储能和新兴负荷大量接入电网,配电网全域可观性和区域协调控制难度增大。为此,需要引入边缘智能体作为配电网终端进行数据采集、分析、计算及调控的智能载体,实现配电网高效智能自治运行。传统配电自动化系统在进行顶层设计时,其业务架构和软件设计通常分开进行,相对割裂,给配网高效稳定运行带来隐患。因此,提出基于领域驱动设计系统架构理念的边缘智能体系统架构方法。首先分析了边缘智能体内部架构及功能模块实现方法,其次利用领域驱动设计思想,构建了配电边缘智能体领域模型,设计了相应的领域实体、状态服务能力和领域服务功能,最后给出了软件平台构建方法及软件检测方法,并结合具体案例对所构建系统进行了验证分析。
With the increasing integration of high-proportion distributed power sources,energy storage,it is necessary to introduce edge in-telligent agents as intelligent entities at the terminals of distribution networks for data collection,analysis,computation,and control,there-by achieving efficient and intelligent autonomous operation of distribution networks.Traditional distribution automation systems,when un-dergoing top-level design,often separate business architecture and software design,which can lead to fragmentation and pose risks to the efficient and stable operation of distribution networks.Hence,an architecture for edge intelligent agent systems based on the concept of do-main-driven design system architecture is proposed.Firstly,the internal architecture and implementation methods of functional modules of edge intelligent agents are analyzed.Secondly,using the domain-driven design approach,it constructs the domain model of edge intelligent agents in distribution networks,designs corresponding domain entities,state service capabilities,and domain service functions.Finally,it provides methods for constructing software platforms and software testing,and conducts verification analysis of the constructed system by-case studies.
作者
肖茂然
郭宁
强宇一
曾锃
嵇托
夏元轶
刘友春
XIAO Maoran;GUO Ning;QIANG Yuyi;ZENG Cheng;JI Tuo;XIA Yuanzhi;LIU Youchun(Information and Communication Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210024,China;Electric Power Research Institute,State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 211103,China;Jiangsu Power Information Technology Co.,Ltd.,Nanjing 210024,China)
出处
《电力需求侧管理》
2024年第6期81-87,共7页
Power Demand Side Management
基金
国家电网公司科技项目(J2023114)。
关键词
配电网
边缘智能体
光伏预测
潮流计算
领域驱动
distribution network
edge intelligent agents
photovoltaic forecasting
power flow calculation
domain-driven design