摘要
针对光伏功率预测误差对调度结果影响严重的问题,提出了计及光伏不确定性的居民储荷优化调度策略。采用仿射算法量化光伏出力不确定性,建立以居民日用电成本最小和舒适度最大为目标的储荷优化调度模型求解得到居民微储能充放电计划和日前用电计划。经仿真验证,所提算法能够充分考虑光伏出力的不确定性,有效提升调度模型的准确性,在保证用户满意度的同时缓解高峰用电压力。
In order to solve the problem that the PV power prediction error has a serious impact on the dispatch results,an optimal storage-load dispatch strategy for residents considering photovoltaic uncertainty is proposed.The affine algorithm was used to quantify the uncer-tainty of photovoltaic output,and a storage-load optimization scheduling model was established with the goal of minimizing the daily elec-tricity cost and maximizing the comfort of residents,and the Gurobi solver was used to calculate the micro-energy storage charging and dis-charging plan and the day-ahead electricity consumption plan of residents.Through simulation verification,the proposed algorithm can ful-ly consider the uncertainty of photovoltaic output,effectively improve the accuracy of the scheduling model,and alleviate the pressure of peak power consumption while ensuring user satisfaction.
作者
段军红
梁琛
李亚昕
王维洲
甄文喜
许苗苗
DUAN Junhong;LIANG Chen;LI Yaxin;WANG Weizhou;ZHEN Wenxi;XU Miaomiao(State Grid Gansu Electric Power Co.,Ltd.,Lanzhou 730050,China;Science Research Institute,State Grid Gansu Electric Power Co.,Ltd.,Lanzhou 730070,China;College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China)
出处
《电力需求侧管理》
2024年第6期107-111,共5页
Power Demand Side Management
基金
国家电网公司科技项目(52272223004T)。
关键词
仿射算法
光伏预测误差
微储能
储荷优化调度
用户满意度
affine algorithm
photovoltaic prediction error
micro energy storage
storage-load optimization scheduling
user satisfaction