摘要
常规的电力巡检机器人自主越障控制方法以静态越障控制为主,无法自主识别前方障碍,出现越障控制失误的问题。因此,设计了基于元强化学习的电力巡检机器人自动越障控制方法。提取机器人自主越障动力学特征,将电力巡检机器人越障过程中受到的吸附力、支持力、摩擦力考虑在内,分析越障控制的静平衡条件,从而避免越障倾覆的问题。基于元强化学习构建巡检机器人自主越障控制模型,利用元强化学习算法自动学习越障控制模型的超参数,优化自主越障控制网络结构,实现机器人的精准控制。规划电力巡检机器人自主越障控制轨迹,在巡检机器人满足重力平衡条件的基础上,规划电力巡检机器人自主越障轨迹,通过机器人关节变化状态,达到控制机器人越障的目的。采用对比实验,验证了该方法的越障控制性能更佳,能够应用于实际生活中。
The conventional autonomous obstacle control method of electric inspection robot is mainly static obstacle control,which cannot independently identify the obstacles in front,and the problem of obstacle control error occurs.Therefore,the automatic obstacle crossing control method of electric power inspection robot based on meta-reinforcement learning is designed.The dynamic characteristics of the robot autonomous obstacle crossing are extracted,the adsorption force,support force and friction force received in the process of the power inspection robot are taken into account,and the static balance conditions of the obstacle crossing control are analyzed,so as to avoid the problem of obstacle crossing and overturning.Based on meta-reinforcement learning,the inspection robot autonomous barrier-crossing control model is constructed to automatically learn the super parameters of the meta-reinforcement learning algorithm to optimize the network structure of autonomous barrier-crossing control and realize the accurate control of the robot.Planning the trajectory of the autonomous obstacle control of the electric inspection robot.On the basis of the inspection robot meeting the gravity balance conditions,the autonomous obstacle control trajectory of the electric inspection robot is planned to control the obstacle control of the robot through the change state of the robot joint.By using comparative experiment,the method has better obstacle control performance and can be applied in real life.
作者
李耀贵
Li Yaogui(Guangdong Technology College,Zhaoqing,China)
出处
《科学技术创新》
2024年第24期29-32,共4页
Scientific and Technological Innovation
基金
广东省教育科学规划课题:大学生科技社团促进高校校园创新文化的路径研究(项目编号:2023GXJK606)
2023年度广东理工学院“创新强校工程”科研项目:变排量双向伺服泵在钣金设备上的应用研究(2023YBZK001)
2023年度广东理工学院“质量工程”项目:PLC控制技术(YLKC202302)。
关键词
元强化学习
电力巡检
巡检机器人
自动越障
meta-reinforcement learning
power inspection
inspection robot
automatic obstacle