摘要
高比例可再生能源接入电网带来大量不确定性因素,传统确定性规划方式将导致系统设备利用率低、弃风弃光严重等问题。基于互联网建立全面、实时和共享的规划数据体系,实现电源侧和负荷侧双方信息透明交互,从而避免规划的盲目性。计及源荷特性进行概率建模,运用多场景分析模拟源荷间不确定性,基于改进M-K聚类算法确定源荷典型场景。构建上层以规划综合成本最低为目标,下层从经济、技术和安全三个角度进行优化的双层规划模型,应用免疫遗传算法进行求解。最后通过对配电网区域和整体算例进行比较验证,结果表明基于互联网技术的规划模式能有效降低电网容载比和规划综合成本,同时减少弃风弃光现象。
The integration of a high proportion of renewable energy into the power grid brings lots of uncertainty factors.Applying traditional deterministic planning will lead to problems such as low utilization of system equipment and serious wind and photovoltaic curtailment,etc.Based on the Internet,a comprehensive,real-time and shared planning data system was established to realize the transparent interaction of information between the power supply side and the load side and avoid blindness in planning.Probabilistic modeling was taken into account the characteristics of the source and load.Applying multi-scenario analysis to simulate the uncertainty of the source and load,and the improved M-K clustering algorithm is used to determine the typical scenarios of the source and load.Founding a bi-level programming model in which the upper layer aims at the lowest comprehensive cost of planning and the lower layer optimizes from three perspectives of economy,technology and safety.The model was solved by applying immune genetic algorithm.Finally,the comparison and verification of distribution network area and the overall calculation example show that the planning mode based on the Internet technology can effectively reduce the capacity ratio and the comprehensive planning cost of power grid,while reducing the phenomenon of wind and light curtailment.
作者
章勇高
邱兴隆
方华亮
ZHANG Yonggao;QIU Xinglong;FANG Hualiang(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China;School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China)
出处
《电测与仪表》
北大核心
2024年第11期148-156,共9页
Electrical Measurement & Instrumentation
基金
国家重点研发计划项目(2018YFB0904200)。
关键词
不确定性
互联网
源荷互动
多场景分析
双层规划模型
uncertainty
Internet
source and load interaction
multi-scenario analysis
bi-level programming model