期刊文献+

基于AutoML-SHAP的超高性能混凝土抗压强度可解释预测

Interpretable Prediction of Compressive Strength of Ultra-High Performance Concrete Based on AutoML-SHAP
下载PDF
导出
摘要 超高性能混凝土(UHPC)的抗压强度与其配比成分之间存在高度非线性的复杂关系,利用传统的统计方法难以准确预测抗压强度。为解决这一问题,本文提出一种基于自动机器学习(AutoML)技术的UHPC抗压强度预测办法,同时引入沙普利加和解释(SHAP)增加其可解释性。AutoML和SHAP的集成有助于构建精确、高效且可解释的模型。结果表明,AutoML模型可自动建立,其准确性、稳健性优于基础模型。SHAP通过全局解释性分析、单样本解释分析以及特征依赖性解释分析,阐明了各个特征因素对抗压强度的影响机理,有助于UHPC抗压强度发展机制以及影响参数重要性的理解,可为UHPC的设计与应用提供参考。 The correlations between compressive strength of UHPC and its mixture composition exhibit pronounced nonlinearity,presenting a challenge for analysis through conventional statistical approaches.In this study,an automatic machine learning(AutoML)technology was proposed to predict compressive strength of UHPC,and shapley additiveex planations(SHAP)was introduced to explain the AutoML model.The integration of AutoML and SHAP offered synergistic benefits,facilitating the development of a precise,efficient,and comprehensively interpretable model.Results demonstrate that AutoML model is automatically built with better accuracy and robustness than the base model.SHAP provides a global explanation,a single sample explanation,and a feature dependence explanation of characterization factors,which explains mechanism of the effect of each characterization factor on compressive strength.SHAP contributes to the understanding of mechanism of UHPC compressive strength development and the importance of characteristic factors,and can provide assistance in the design and application of UHPC.
作者 李硕 艾丽菲拉·艾尔肯 罗文波 陈锦杰 LI Shuo;AILIFEILA Aierken;LUO Wenbo;CHEN Jinjie(School of Civil Engineering,Xiangtan University,Xiangtan 411105,China;School of Civil Engineering,Changsha University,Changsha 410022,China;Hunan Key Laboratory of Geomechanics and Engineering Safety,Xiangtan University,Xiangtan 411105,China)
出处 《硅酸盐通报》 CAS 北大核心 2024年第10期3634-3644,共11页 Bulletin of the Chinese Ceramic Society
基金 国家自然科学基金(12072308)。
关键词 超高性能混凝土 抗压强度 机器学习 AutoML SHAP ultra-high performance concrete compressive strength machine learning AutoML SHAP
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部