期刊文献+

基于CNN-LSTM的混凝土重力坝变形预测模型

Deformation prediction model of concrete gravity dam based on CNN-LSTM
下载PDF
导出
摘要 大坝变形是评估大坝整体工作状态的重要监测指标,准确预测变形情况能够有效防范因大坝失事造成的损失。传统的预测方法基于统计或机器学习,往往难以有效捕捉混凝土坝变形与多种环境影响因子之间的复杂关系,因此提出了一种结合卷积神经网络(CNN)和长短期记忆网络(LSTM)的混凝土坝变形预测模型,即CNN-LSTM模型,并通过实际混凝土重力坝的变形监测数据验证了该模型的有效性。通过综合对比基于长短期记忆网络(LSTM)、循环神经网络(RNN)和支持向量机(SVM)的模型,发现CNN-LSTM模型在精度和泛化能力方面表现更优,可作为大坝安全监测的有效工具。 The deformation of dams is an important monitoring indicator for assessing the overall operational status of a dam.Accurate prediction of deformation can effectively prevent losses caused by dam failures.Traditional prediction methods based on statistics or machine learning often struggle to capture the complex relationships between concrete dam deformation and various environmental impact factors.To address this issue,this paper proposes a concrete dam deformation prediction model that combines Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM)networks,namely the CNN-LSTM model.The effectiveness of this model is validated using deformation monitoring data from an actual concrete gravity dam.A comprehensive comparison with models based on LSTM,RNN,and SVM demonstrates that the proposed CNN-LSTM model excels in terms of accuracy and generalization capabilities,making it a promising tool for dam safety monitoring.
作者 马宁 魏文秀 王翔宇 王铎睿 张宇腾 钟雯 Ma Ning;Wei Wenxiu;Wang Xiangyu;Wang Duorui;Zhang Yuteng;Zhong Wen(State Power Investment Corporation Dam and Pumped Storage Center,Xi’an716000,China;State Key Laboratory of Eco-hydraulics in Northwest Arid Region,Xi’an University of Technology,Xi’an710048,China)
出处 《吉林水利》 2024年第11期9-14,共6页 Jilin Water Resources
基金 国家重点研发计划项目(2022YFC3004403)。
关键词 混凝土坝 变形预测 卷积神经网络 长短期记忆网络 组合模型 Concrete dam Deformation prediction CNN LSTM Combination model
  • 相关文献

参考文献13

二级参考文献175

共引文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部