期刊文献+

基于点云数据的在役道路路面自动化提取方法

Automatic Extraction Method of in-Service Road Pavement Based on Point Cloud Data
下载PDF
导出
摘要 为了从点云数据中提取道路要素,为道路基础设施的数字化和高精度地图的制作提供基础,文章结合地面分割和路面提取开发了一种自动化提取过程。首先进行地面分割,采用算法对点云数据进行预处理,实现地面点云与非地面点云的有效分离;其次选取种子点,基于点云几何特性的智能算法,选定代表典型路面特征的种子点;最后使用区域生长算法对路面进行自动化提取,解决了生长算法的过分割问题。 In order to extract road elements from point cloud data and provide a basis for the digitization of road infrastructure and the production of high-precision maps,an automatic extraction process is developed in this paper by combining ground segmentation and pavement extraction.Firstly,the ground segmentation is carried out,and the algorithm is used to preprocess the point cloud data to realize the effective separation of the ground point cloud and the non-ground point cloud.Secondly,the seed points are selected,and the seed points representing the typical pavement characteristics are selected based on the intelligent algorithm of the geometric characteristics of the point cloud.Finally,the regional growth algorithm is used to automatically extract the pavement,which solves the problem of over-segmentation of the growth algorithm.
作者 姚渊 李仕勋 金穗 孙宪猛 YAO Yuan;LI Shixun;JIN Sui;SUN Xianmeng(Automotive Engineering Research Institute,BYD Automotive Industry Company Limited,Shenzhen 518118,China)
出处 《汽车实用技术》 2024年第22期18-24,共7页 Automobile Applied Technology
关键词 点云数据 机器学习 典型路面特征 自动化提取 point cloud date machine learning typical pavement characteristics automatic extraction
  • 相关文献

参考文献1

二级参考文献6

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部