摘要
为了从点云数据中提取道路要素,为道路基础设施的数字化和高精度地图的制作提供基础,文章结合地面分割和路面提取开发了一种自动化提取过程。首先进行地面分割,采用算法对点云数据进行预处理,实现地面点云与非地面点云的有效分离;其次选取种子点,基于点云几何特性的智能算法,选定代表典型路面特征的种子点;最后使用区域生长算法对路面进行自动化提取,解决了生长算法的过分割问题。
In order to extract road elements from point cloud data and provide a basis for the digitization of road infrastructure and the production of high-precision maps,an automatic extraction process is developed in this paper by combining ground segmentation and pavement extraction.Firstly,the ground segmentation is carried out,and the algorithm is used to preprocess the point cloud data to realize the effective separation of the ground point cloud and the non-ground point cloud.Secondly,the seed points are selected,and the seed points representing the typical pavement characteristics are selected based on the intelligent algorithm of the geometric characteristics of the point cloud.Finally,the regional growth algorithm is used to automatically extract the pavement,which solves the problem of over-segmentation of the growth algorithm.
作者
姚渊
李仕勋
金穗
孙宪猛
YAO Yuan;LI Shixun;JIN Sui;SUN Xianmeng(Automotive Engineering Research Institute,BYD Automotive Industry Company Limited,Shenzhen 518118,China)
出处
《汽车实用技术》
2024年第22期18-24,共7页
Automobile Applied Technology
关键词
点云数据
机器学习
典型路面特征
自动化提取
point cloud date
machine learning
typical pavement characteristics
automatic extraction