期刊文献+

8.2%-Efficiency hydrothermal Sb_(2)S_(3) thin film solar cells by two-step RTP annealing strategy

两步快速热处理退火策略实现8.2%效率的水热法硫化锑薄膜太阳能电池
原文传递
导出
摘要 Antimony sulfide(Sb_(2)S_(3))solar cells fabricated via hydrothermal deposition have attracted widespread attention.The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydrothermal Sb_(2)S_(3)thin films.Nevertheless,incomplete crystallization and the loss of sulfur at high-temperature contribute to defect recombination,constraining device performance.Herein,a twostep rapid thermal processing(RTP)annealing strategy is proposed to improve the crystal quality and efficiency of Sb_(2)S_(3)solar cells.The annealing process in Ar protection with atmospheric pressure can suppress S loss caused by saturated vapor pressure.The two-step RTP annealing with the 330℃ low-temperature and 370℃ high-temperature process ensures high crystallinity and vertical orientations of Sb_(2)S_(3)thin films,accompanied by a reduction in defect concentration from 1.01×10^(12)to 5.97×10^(11)cm^(-3).The Sb_(2)S_(3)solar cell achieves an efficiency of 8.20%with an enhanced open circuit voltage(VOC)of 784 mV.The build-in voltage(Vbi)of 1.17 V and irradiation-dependent ideal factor(n)of 1.48 demonstrate enhanced heterojunction quality and suppressed defect recombination in the devices.The presented two-step annealing strategy and physical mechanism study will open new prospects for high-performance Sb_(2)S_(3)solar cells. 水热法制备的硫化锑(Sb_(2)S_(3))太阳能电池引起了广泛关注.退火结晶是水热制备Sb_(2)S_(3)薄膜的关键工艺.然而,薄膜不完全结晶和高温S损失会导致缺陷复合,从而限制器件性能.本文提出了一种两步快速热处理退火策略,以提高Sb_(2)S_(3)太阳能电池的结晶质量和转换效率.氩气保护下的常压退火过程可以抑制饱和蒸汽压引起的S损失,以330℃低温和370℃高温过程实现两步退火,保证了Sb_(2)S_(3)薄膜的高结晶度和垂直取向,薄膜的缺陷浓度从1.01×10^(12)降低到5.97×10^(11)cm^(-3).Sb_(2)S_(3)太阳能电池的光电转换效率达到8.20%,其中开路电压为784 mV.1.17 V的内建电压(V_(bi))和1.48的光强依赖因子表明,器件的异质结质量得到了提高,缺陷复合被抑制.本文所提出的两步退火策略和物理机制为研究Sb_(2)S_(3)薄膜太阳能电池提供了新思路.
作者 Hui Deng Xinxin Feng Qiqiang Zhu Yonghao Liu Guidong Wang Caixia Zhang Qiao Zheng Jionghua Wu Weihuang Wang Shuying Cheng 邓辉;冯信信;朱奇强;刘永豪;王桂东;张彩霞;郑巧;吴炯桦;王伟煌;程树英(College of Physics and Information Engineering,Institute of Micro-Nano Devices and Solar Cells,Fuzhou University,Fuzhou 350108,China;Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China;Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering,Changzhou 213164,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2024年第11期3666-3674,共9页 中国科学(材料科学)(英文版)
基金 supported by the National Natural Science Foundation of China(52372183,52002073,62305064) the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ124) the Foundation of Fujian Provincial Department of Industry and Information Technology of China(82318075)。
  • 相关文献

参考文献2

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部