期刊文献+

组网雷达系统高精度协同跟踪和功率分配方法

High accuracy cooperative tracking and power allocation method in networked radar system
下载PDF
导出
摘要 分布式组网雷达系统可充分利用多雷达协同优势提升动目标跟踪性能。然而,在实际中,组网雷达系统的发射总功率受限且量测函数的高度非线性,都会导致目标跟踪精度极大受限。针对上述问题,提出一种基于不相关转换滤波(uncorrelated conversion based filter,UCF)的高精度目标协同跟踪和资源管理方法,该滤波方法可充分提取有效量测信息,提升目标状态估计性能,且该信息可作为整体框架的反馈信息进一步优化资源分配。首先推导了后验克拉美罗下界作为优化准则,利用该准则给出当前时刻的最优资源分配;然后基于分配的功率资源,进行目标状态估计;针对强非线性量测函数,提出一种UCF,利用不相关转换提取更多原始量测中的信息,并将其用于线性最小均方误差框架进行状态估计,从而提高目标状态估计性能。仿真结果验证了所提方法的有效性。 Distributed networked radar system(NRS)can take full advantage of multi-radar synergistic features to improve the tracking performance of a moving target.However,in fact,the limited total transmitted power and the high nonlinearity of the measurement function of an NRS heavily restrict the target tracking performance.To solve these problems,a high accuracy cooperative tracking and resource allocation method is proposed,in which the uncorrelated conversion based filter(UCF)is utilized to improve the estimation performance by extracting effective measurement information.Moreover,this estimation can be considered as the feedback information for the framework to further optimize the performance of the resource allocation.Firstly,the posterior Cramer-Rao lower bound(PCRLB)is derived as the optimization criterion,which can be utilized to obtain the optimized resource allocation.And then according to the allocated power,the target state can be estimated.A UCF is proposed for strongly nonlinear measurement functions,which utilizes uncorrelated conversion to extract more information from the original measurements and applies it to a linear minimum mean square error framework for state estimation,thereby improving the performance of target state estimation.The simulation results verify the effectiveness of the proposed method.
作者 张英杰 陈洪猛 高文权 兰剑 叶春茂 陈燕 ZHANG Yingjie;CHEN Hongmeng;GAO Wenquan;LAN Jian;YE Chunmao;CHEN Yan(Beijing Institute of Radio Measurement,Beijing 100854,China;School of Automation Science and Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2024年第11期3726-3735,共10页 Systems Engineering and Electronics
基金 国家自然科学基金(U1809202)资助课题。
关键词 组网雷达 功率分配 协同跟踪 不相关转换 非线性滤波 networked radar power allocation cooperative tracking uncorrelated conversion nonlinear filtering
  • 相关文献

参考文献7

二级参考文献44

  • 1周万幸,吴呜亚,胡明春.双(多)基地雷达系统[M].北京:电子工业出版社,2011:1-30.
  • 2Van Trees H L, Bell K L, and Wang Y. Bayesian Cramer-Rao bounds for multistatic radar[C]. Proceedings of the Waveform Diversity Design, Washington, 2006: 856-859.
  • 3Godrich H, Petropulu A, and Poor H V. Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 247-260.
  • 4Godrich H, Petropulu A, and Poor H V. Power allocation strategies for target localization in distributed multiple-radar architecture[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226-3240.
  • 5Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
  • 6Hero A O and Cochran D. Sensor management: past, present, and future[J]. IEEE Sensors Journal, 2011, 11(12): 3064- 3075.
  • 7Boyd S and Vandenberghe L. Convex Optimization[M]. Cambridge: UK, Cambridge University, 2004: 67-127.
  • 8Rao S S. Ei~gineering Optimization: Theory and Practice[M], 3rd Ed, New York: Wiley, 1996: 383-425.
  • 9Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[M]. Norwood, MA: Artech House, 2004: 1-82.
  • 10Bar-Shalom Y, Li X R, and Kirubarajan T. Estimation with Applications to Tracking and Navigation[M]. New York, NY: John Wiley &: Sons, 2001: 199-295.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部