期刊文献+

基于带宽匹配的软件定义数据中心网络流量节能调度方案

Traffic energy efficient scheduling scheme based on bandwidth matching in software defined data center networks
下载PDF
导出
摘要 针对数据中心网络的流调度优化问题,选用经典的Fat-Tree拓扑结构,利用软件定义网络集中控制的优势,提出一种基于带宽匹配的节能路由算法(energy efficient routing algorithm,EERA)。EERA首先对需要传输的数据流按照其截止时间进行排序,然后对拓扑中的链路权值按照每个排序后的数据流需要传输的数据量进行更新,删除可用带宽不满足传输数据量的链路,得到新的拓扑图。在重新定义的拓扑图中,EERA计算源节点和目标节点之间所有可用链路,从这些可用链路中选取与流传输数据量所需带宽最匹配的链路进行路由。仿真实验表明,在不增加额外存储开销的前提下,EERA为即将到来的数据流预留了足够的带宽,减少了网络链路拥塞,在节省网络能耗的同时实现了网络负载均衡。 To solve the traffic scheduling optimization problem in the data center networks,an energy efficient routing algorithm(EERA)is proposed based on bandwidth matching in the software defined data center networks,and takes the advantage of the software defined network centralized control using classic Fat-Tree topology.EERA sorts the traffic according to their deadlines and traffic sizes and updates the link weights in the topology for each sorted traffic according to the amount of data.Then EERA deletes the links whose available bandwidth does not meet the amount of transmitting data and gets a new topology.In the redefined topology,EERA calculates all the available links between the source node and the target node,then selectes the optimal links from these available links that match the bandwidth required by traffic transmitting.Simulation results show that EERA reserves enough bandwidth for incoming traffic with no additional storage overhead,and reduces the network congestion.At the same time,EERA saves the network energy consumption and achieves the network load balancing.
作者 张朝辉 周嘉琦 ZHANG Zhaohui;ZHOU Jiaqi(School of Mathematics and Statistics,Xidian University,Xi’an 710126,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2024年第11期3901-3911,共11页 Systems Engineering and Electronics
基金 国家自然科学基金(62202351)资助课题。
关键词 数据中心网络 软件定义网络 流量调度 负载均衡 节能路由 data center network software defined network traffic scheduling load balancing energy efficient routing
  • 相关文献

参考文献8

二级参考文献38

  • 1Open Networking Fundation. SDN [EB/OL]. [2013-08-03]. https://www.opennetworking.org.
  • 2Tootoonchian A, Ghobadi M, Ganjali Y. OpenTM: Traffic Matrix Estimator for OpenFlow Networks [C]//Proceedings of the 11th International Conference on Passive and Active Measurement (PAM). Heidelberg: Springer, 2010: 201-210.
  • 3Jose L, Yu M, Rexford J. Online Measurement of Large Traffic Aggregates on Commodity Switches [C]//Proceedings of the 11th USENIX Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE). Berkeley: USENIX Association, 2011: 13.
  • 4Braga R, Mota E, Passito A. Lightweight DDoS Flooding Attack Detection Using NOX/OpenFlow [C]//IEEE 35th Conference on Local Computer Networks. Piscataway: IEEE, 2010: 408-415.
  • 5Mehdi S A, Khalid J, Khayam S A. Revisiting Traffic Anomaly Detection Using Software Defined Networking [C]//Proceedings of the 14th International Conference on Recent Advances in Intrusion Detection. Heidelberg: Springer, 2011: 161-180.
  • 6Mckeown N, Anderson T, Balakrishnan H, et al. OpenFlow: Enabling Innovation in Campus Networks [J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74.
  • 7Nychis G, Sekar V, Andersen D G, et al. An Empirical Evaluation of Entropy-based Traffic Anomaly Detection [C]//Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement. New York: ACM, 2008: 151-156.
  • 8Lakhina A, Crovella M, Diot C. Diagnosing Network-wide Traffic Anomalies [C]//Proceedings of the ACM SIGCOMM. New York: ACM, 2004: 219-230.
  • 9Lakhina A, Crovella M, Diot C. Mining Anomalies Using Traffic Feature Distributions [C]//Proceedings of the ACM SIGCOMM. New York: ACM, 2005: 134-145.
  • 10Soule A, Salamatian K, Taft N. Combining Filtering and Statistical Methods for Anomaly Detection [C]//Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement. Berkeley: USENIX Association, 2005: 31.

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部