期刊文献+

Alpha稳定分布噪声和多径干扰下的无人机集群MIMO信号调制识别

Modulation recognition of unmanned aerial vehicle swarm MIMO signals under Alpha stable distribution noise and multipath interference
下载PDF
导出
摘要 针对具有多径效应、大气噪声等复杂因素的无人机(unmanned aerial vehicle,UAV)集群多输入多输出(multiple-input multiple-output,MIMO)信道的信号调制方式识别问题,提出基于循环谱特征和高阶累积量特征的调制识别方法。首先,根据UAV集群复杂通信信道环境,建立Alpha稳定分布噪声干扰和多径干扰下的UAV集群MIMO信道。其次,分析MIMO接收信号的高阶累积量特征和循环谱特征,提取出判别调制识别方式能力强的特征值,构造集群信号特征样本。最后,将特征样本输入深度稀疏自编码网络,实现6种调制方式的识别。仿真结果表明,该调制识别方法在UAV集群复杂通信环境下是有效的,当识别准确率为90%时,深度稀疏自编码网络识别性能优于多层感知机识别性能约1 dB。在存在直射径的MIMO多径信道中,当混合信噪比为0 dB时,识别准确率均能达到96%,在低信噪比下有较高的识别准确率,对复杂的信道环境下的MIMO信号识别具有鲁棒性。 Aiming at the problem of signal modulation recognition of multiple-input multiple-output(MIMO)channel of unmanned aerial vehicle(UAV)swarm with multipath effect,atmospheric noise and other interference factors,a modulation recognition method based on cyclic spectral features and high-order cumulant features is proposed.Firstly,according to the characteristics of the complex communication channel of the UAV swarm,the UAV swarm channel with Alpha stable distribution noise interference and multipath interference is established.Secondly,the high-order cumulants and cyclic spectral features of MIMO received signals are analyzed,and the feature values with strong discriminative ability are extracted to construct swarm signal samples.Finally,the samples are fed into the deep sparse autoencoder network to realize recognition of six modulation types.The simulation results show that this modulation recognition method is feasible in complex channel environment of UAV swarm.When the accuracy is 90%,the recognition performance of the deep sparse autoencoder network is about 1 dB better than that of the multilayer perceptron.The accuracy of the method can reach 96% in the MIMO multipath channel with line of sight path when the mixed signal-to-noise ratio is 0 dB,indicating that it has a high recognition accuracy at low signal-to-noise ratio,and it is robust to modulation recognition in complex MIMO communication channels.
作者 平嘉蓉 李赛 林云航 PING Jiarong;LI Sai;LIN Yunhang(School of Electronics and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2024年第11期3920-3929,共10页 Systems Engineering and Electronics
基金 国家自然科学基金(61971221)资助课题。
关键词 调制识别 多输入多输出 循环谱 高阶累积量 深度稀疏自编码网络 modulation recognition multiple-input multiple-output(MIMO) cyclic spectrum high-order cumulant deep sparse autoencoder network
  • 相关文献

参考文献4

二级参考文献31

  • 1王自维,姚志成,王海洋,李昱婷,侯范.基于改进LeNet-5模型的无人机遥控信号调制方式识别算法[J].火箭军工程大学学报,2021(4):30-34. 被引量:1
  • 2柳征,王明阳,姜文利,周一宇.一种新的贝叶斯调制分类算法[J].电子与信息学报,2006,28(7):1233-1237. 被引量:4
  • 3许宏吉,刘琚,谷波,胡慧博.空时分组码通信中的一类ICA盲检测方案[J].通信学报,2007,28(6):12-19. 被引量:8
  • 4HYVARINEN A,OJA E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1997,9(7):1483-1492.
  • 5HYVARINEN A,KARHUNEN J,OJA E.Independent Component Analysis[M].New York:John Wiley & Sons,2001.
  • 6ALAMOUTI S M.A simple transmit diversity technique for wireless communications[J].IEEE Journal on Selec Areas in Comm,1998,16(8):1451-1458.
  • 7COMON P.Independent component analysis,a new concept?[J].Signal Processing,1994,36:287-314.
  • 8HYVARINEN A,PAJUNEN P.Nonlinear independent component analysis:existence and uniqueness results[J].Neural Networks,1999,12(3):429-439.
  • 9CARDOSO J F,SOULOUMIAC A.Blind beamforming for non gaussian signals[J].IEE Proceedings-F,1993,140(6):362-370.
  • 10CARDOSO J F,LAHELD B H.Equivariant adaptive source separation[J].IEEE Trans Signal Processing,1996,44:3017-3030.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部