摘要
文章研究车辆编队纵向控制问题,针对车辆编队易受大幅值且不连续的外部扰动影响,提出一种新的基于有限时间干扰观测器的非奇异终端滑模控制(non-singular terminal sliding-mode control,NSTSMC)策略.首先,通过有限时间干扰观测器观测扰动,使观测器观测误差能够在有限时间内收敛至零.然后,通过设计NSTSMC控制器,使编队的间距误差能够在有限时间内运动到所设计的耦合滑模面,随后在有限时间内车间距误差收敛至零.再者,通过设计耦合滑模面系数,采用拉普拉斯变换方法,保证车辆编队的队列稳定性.最后,通过仿真结果表明所提出策略的有效性,并通过与传统滑模控制律(sliding-mode control,SMC)作对比,突出文章所提控制策略在抑制扰动方面的优越性.结果表明,文章设计的基于有限时间干扰观测器的车辆编队控制策略解决了扰动易对车队系统造成不稳定的问题,保证了车队的安全稳定行驶.
This study investigates the longitudinal control problem of vehicle platoon.Considered the characteristic of vehicle platoons being easily affected by large-amplitude and discontinuous external disturbances,a new strategy based on a finite-time disturbance observer and non-singular terminal sliding-mode control(NSTSMC)is proposed.Firstly,disturbances are observed through the finite-time disturbance observer,allowing the observation error to converge to zero within a finite time.Then,by designing an NSTSMC controller,the spacing error of the platoon can move to the designed coupling sliding-mode surface within a finite time,and then the spacing error converges to zero in finite time.Furthermore,by designing the coupling sliding-mode surface coefficients and using the Laplace transform method,the string stability of the vehicle platoon is ensured.Finally,the effectiveness of the proposed algorithm is demonstrated through simulation results,and compared with the traditional sliding-mode control law(SMC),highlighting the superiority of the proposed control algorithm in suppressing disturbances.The results show that the algorithm designed solves the problem of disturbances easily causing instability in the vehicle platoon system,ensuring the safe and stable driving of the vehicle platoon.
作者
曾叶
雷鸿博
ZENG Ye;LEI Hongbo(School of Computer and Software Engineering,Xihua University,Chengdu 610039;School of Physics and Electronic Engineering,Sichuan University of Science&Engineering,Zigong 643000;Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things,Yibin 644000;School of Artificial Intelligence,Hezhou University,Hezhou 542899)
出处
《系统科学与数学》
CSCD
北大核心
2024年第10期2895-2906,共12页
Journal of Systems Science and Mathematical Sciences
基金
企业信息化与物联网测控技术四川省高校重点实验室开放基金(2023WYJ05)
贺州市科学研究与技术开发项目(贺科技202225)
贺州学院科研项目成果(2022ZZZK05)资助课题。
关键词
车辆编队
滑模控制
干扰观测器
稳定性
Vehicle platoon
sliding-mode control
disturbance observer
stability