期刊文献+

A novel spatiotemporal urban land change simulation model:Coupling transformer encoder,convolutional neural network,and cellular automata

耦合Transformer-卷积神经网络-元胞自动机的新型城市时空土地利用变化模拟模型
原文传递
导出
摘要 Land use and land cover change(LUCC)process exhibits spatial correlation and temporal dependency.Accurate extraction of spatiotemporal features is important in enhancing the modeling capabilities of LUCC.Cellular automaton(CA)models,recognized as powerful tools for simulating dynamic LUCC processes,are traditionally applied in LUCC,focusing on time-slice driving factor data,often neglecting the temporal dimension.However,the transformer architecture,a highly acclaimed model in machine learning,has been rarely integrated into CA models for the simulation of dynamic LUCC processes.To fill this gap,we proposed a novel spatiotemporal urban LUCC simulation model,namely,transformer-convolutional neural network(TC)-CA.Based on CA models that involve the utilization of a convolutional neural network(CNN)for extracting latent spatial features,TC-CA extends this paradigm by incorporating a transformer architecture to extract spatiotemporal information from temporal driving factor data and temporal spatial features.The evaluation results with Wuxi city as a study area indicated the advantage of our proposed TC-CA against random forest-CA,conventional CNN-CA,artificial neural network-CA,and transformer-CA.Compared with the three non-transformer-based CAs,the TC-CA improved the figure of merit by up to 2.85%-8.14%.This study contributes a fresh spatiotemporal perspective and transformer approach to the field of LUCC modeling.
作者 LI Haiyang LIU Zhao LIN Xiaohan QIN Mingyang YE Sijing GAO Peichao 李海洋;刘钊;林小涵;秦铭阳;叶思菁;高培超
出处 《Journal of Geographical Sciences》 SCIE CSCD 2024年第11期2263-2287,共25页 地理学报(英文版)
基金 National Natural Science Foundation of China,No.42271418,No.42171088 State Key Laboratory of Earth Surface Processes and Resource Ecology,No.2022-ZD-04,No.2023-WT-02。
  • 相关文献

参考文献7

二级参考文献35

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部