摘要
文章简要分析基于深度学习的焊缝图像识别,重点强调基于深度学习的焊缝图像识别技术,并以基于深度学习加强焊缝图像识别的措施作为切入点,对数据预处理与增强、深度学习模型选择与优化、引入注意力机制以及采用多尺度识别策略等方面进行研究,期望能够为相关人员提供参考,从而对焊缝质量进行高效、准确的检测与评估,保证焊接质量。
This paper briefl y analyzes weld seam image recognition based on deep learning,highlights the weld seam image recognition technology based on deep learning,takes the measures to enhance weld seam image recognition based on deep learning as the entry point,and researches the aspects of data preprocessing and enhancement,the selection and optimization of deep learning models,the introduction of the attention mechanism as well as the adoption of the multiscale recognition strategy,which is expected to provide references for the relevant personnel.Thus,the quality of weld seam can be efficiently and accurately detected and evaluated to ensure the quality of welding.
作者
王海
杭小虎
韩树河
邵冬华
Wang Hai;Hang Xiaohu;Han Shuhe;Shao Donghua
出处
《时代汽车》
2024年第22期142-144,共3页
Auto Time
基金
南通市社会民生科技计划项目“基于深度学习的焊缝图像识别方法研究”的研究成果(项目编号:MSZ2022170)。
关键词
深度学习
焊接图像
识别
Deep Learning
Weld Image
Recognition