期刊文献+

基于改进果蝇算法的高可靠无人机分簇路由协议

Highly Reliable UAV Clustering Routing Protocol Based on FOA
下载PDF
导出
摘要 针对复杂无人机集群环境下各节点终端之间缺少可靠的端到端通信路径问题,提出了一种基于改进果蝇算法的高可靠无人机分簇路由协议(HCRFA)。首先,通过改进经典的加权分簇算法,使用节点运动方向、节点平均距离和节点剩余能量等确定簇首和簇规模,并设计入簇规则和簇维护规则;其次,根据跳数、地理位置等信息设计簇内路由机制,利用仿生学集群优化算法制定簇间路由机制;最后,使用NS-3进行仿真实验。仿真实验结果表明,相较于基于平面路由的路由协议、经典加权分簇路由结合地理位置辅助路由协议和改进的容忍时延网络分簇路由协议,HCRFA的数据包到达率和网络开销都有所改善,簇结构更加稳定。 A highly reliable UAV clustering routing protocol(HCRFA)based on fruit fly optimization algorithm(FOA)is proposed to address the problem of the lack of reliable end-to-end communication paths between node terminals in complex UAV swarm environments.Firstly,by improving the classic weighted clustering algorithm,the cluster head and cluster size are determined using node motion direction,average node distance,and remaining energy of nodes,and cluster entry rules and maintenance rules are designed.Secondly,intra cluster routing mechanisms is designed based on hop count,geographic location and other information,while routing mechanism between nodes in different clusters is designed by using biomimetic cluster optimization algorithm.Finally,simulation experiments on the protocol using NS-3 is conducted.The experimental results show that compared with the planar routing protocol,the classical weighted clustering routing combined with greedy perimeter stateless routing protocol,and the improved delay-tolerant network clustering routing protocol,the packet arrival rate and network overhead of HCRFA are improved,and the cluster structure is more stable.
作者 袁学松 YUAN Xuesong(School of Internet and Communication,Anhui Technical College of Mechanical and Electrical Engineering,Wuhu,Anhui 241001,China)
出处 《重庆科技大学学报(自然科学版)》 CAS 2024年第5期58-64,共7页 Journal of Chongqing University of Science and Technology(Natural Sciences Edition)
基金 2021年安徽省高校自然科学重点项目“面向隐私保护的移动群智感知智能绿波控制方法研究”(KJ2021A1521)。
关键词 无人机集群 果蝇算法 加权分簇算法 NS-3 UAV swarm FOA weighted clustering algorithm NS-3
  • 相关文献

参考文献7

二级参考文献72

  • 1于斌,孙斌,温暖,等.NS2与网络模拟[M].北京:人民邮电出版社,2006:1-2,133-169.
  • 2Hart,P E,Nilsson,N J and Raphael,B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cy- bernetics SSC4,1968(2) : 100-107.
  • 3Friedman, M. A mathematical programming model for optimal scheduling for buses depature under determin- istic condition [J]. Transportation Research, 1976, 10 (2) :83-90.
  • 4Gupta,Y P,Gupta,M C,Kumar,A and Sundram,C. A genetic algorithm-based approach to cell composition and layout design problems[J]. Int. Journal of Produc- tion Research, 1996,34 (2) : 447-482.
  • 5Yan,S Y,Lee W T and Shih,Y L. A path-based analo- gous particle swarm optimization algorithm for mini- mum cost network flow problems with concave arc costs[J]. Transportation Planning Journal, 2007, 36 (3) ..393-424.
  • 6Pan,W T. A new evolutionary computation approach: Fruit Fly Optimization Algorithm[C]. 2011 Conference of Digital Technology and innovation Management Tai- pei,2011.
  • 7Pan,W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, In Press, 2011.
  • 8Tong, L L and Shih, B C. Predict the financial crisis by using grey relation analysis, neural network, and case- based reasoning[J]. Chinese. Manage Rev, 2011,4 (2) : 25-37.
  • 9Deng,J. The control problems of grey system[J]. System & Control Letters, 1982 (5): 288-294.
  • 10Wen, K L, Chang Chien S K. , Yeah C K, Wang, C W and Lin H S. Apply matlab in grey system theory[M]. Chuan Hwa Book Co. Ltd,Taiwan,2006.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部