期刊文献+

面向室内场景三维重建的分区联合双边滤波方法

A Partitioned Joint Bilateral Filtering Method for 3D Reconstruction of Indoor Scenes
下载PDF
导出
摘要 基于RGB-D传感器的三维重建在高精度制图中应用广泛,然而深度相机采集的图像存在深度值缺失和噪声等问题,影响了三维点云建图的准确度。针对此问题,提出分区联合双边滤波算法。该算法依据深度图像和灰度图像的左右差异分析像素置信度,并对深度图像中缺失像素做插值处理,实现了对图像基于置信度的分区联合双边滤波。采用Middbur标准数据库和Fast Sensor Motion Dataset数据集进行定性分析和定量对比,证明分区联合双边滤波算法有效平滑了噪声。将该算法应用于三维重建,实验结果表明该算法有效修复了深度图像,提高了三维点云建图和位姿估计的精度。 3D reconstruction based on RGB-D sensor is widely used in high-precision mapping.However,the image collected by depth camera has some problems,such as the loss of depth value and the influence of noise,which affect the accuracy of 3D point cloud mapping.To solve these problems,a partitioned joint bilateral filtering algorithm is proposed in this paper.The confidence of pixels is analyzed based on the Left Right Difference(LRD)of depth image and gray image,the missing pixels image are interpolated in depth image,and the partitioned joint bilateral filtering is realized based on confidence.Middbur standard database and Fast Sensor Motion Datase are used for qualitative analysis and is realized comparison to show that the joint bilateral filtering algorithm can smooth the noise effectively.Finally,the proposed algorithm is applied to 3D reconstruction.Experimental results show that the proposed algorithm can effectively repair the depth image and improve the accuracy of 3D point cloud mapping and pose estimation.
作者 肖志远 李宏伟 张斌 许智宾 邓晨 XIAO Zhiyuan;LI Hongwei;ZHANG Bin;XU Zhibin;DENG Chen(School of Water Conservancy Science and Engineering Zhengzhou University,Zhengzhou 450001,China;School of Geoscience and Technology Zhengzhou University,Zhengzhou 450052,China;School of Information Engineering Zhengzhou University,Zhengzhou 450052,China)
出处 《测绘科学技术学报》 2024年第5期505-510,540,共7页 Journal of Geomatics Science and Technology
基金 国家自然科学基金项目(41571395)。
关键词 滤波 分区联合双边滤波 置信度 三维点云 三维重建 filtering partitioned joint bilateral filtering confidence 3D point cloud 3D reconstruction
  • 相关文献

参考文献5

二级参考文献21

  • 1吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京:北京大学出版社,2008.
  • 2何钰,徐青,邢帅.基于偏微分方程的去噪方法[J].测绘科学技术学报,2007,24(4):284-286. 被引量:5
  • 3Emanuete Mirante,Mihail Georgiev,Atanas Gotchev.A Fast Image Segmentation Algorithm Using Color And Depth Map,in Proc.IEEE Conf.3DTV Conference:The True Vision-Capture,Transmission and Display of 3D Video (3DTVCON).2011,pp.1-4.
  • 4Jingjing Fu,Shiqi Wang,Yan Lu,Shipeng Li,Wenjun Zeng.Kinect-Like Depth Denoising.Circuits and Systems (ISCAS),in Proc.IEEE Conf.2012 IEEE International Symposium.2012,pp.512-515.
  • 5Krishna Rao Vijayanagar,Maziar Loghman,Joohee Kim.Refinement Of Depth Maps Generated By Low-Cost Depth Sensors,in Proc.IEEE Conf.SoC Design Conference (ISOCC).2012,pp.355-358.
  • 6Na-Eun Yang,Yong-Gon Kim,Rae-Hong Park.Depth Hole Filling Using the Depth Distribution of Neighboring Regions of Depth Holes in the Kinect Sensor,in Proc.IEEE Conf.Signal Processing,Communication and Computing (ICSPCC).2012,pp.658-661.
  • 7J(o)rn Jachalsky,Markus Schlosser,Dirk Gandolph.Reliabilityaware Cross Multilateral Filtering For Robust Disparity.Map Refinement,in Proc.IEEE Conf.3DTV-Conference:The True Vision-Capture,Transmission and Display of 3D Video (3DTV-CON).2010,pp.1-4.
  • 8PoLin Lai,Dong Tian,and Patrick Lopez.Depth Map Processing With Iterative Joint Multilateral Filtering,in Proc.IEEE Conf.28th Picture Coding Svmposium(PCS).2010,pp.9-12.
  • 9PERONA P,MALIK J.Scale-space and Edge Detection Using Anisotropie Diffusion[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 10RUDIN L,OSHER S,FATEMI E.Nonlinear Total Variation Based Noise Removal Algorithms[J].Physica D,1992,60:259-268.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部