期刊文献+

Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection

下载PDF
导出
摘要 More businesses are deploying powerful Intrusion Detection Systems(IDS)to secure their data and physical assets.Improved cyber-attack detection and prevention in these systems requires machine learning(ML)approaches.This paper examines a cyber-attack prediction system combining feature selection(FS)and ML.Our technique’s foundation was based on Correlation Analysis(CA),Mutual Information(MI),and recursive feature reduction with cross-validation.To optimize the IDS performance,the security features must be carefully selected from multiple-dimensional datasets,and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets.Our technique identified 22 key characteristics in UNSW-NB-15 and 8 in TON_IoT.We evaluated prediction using seven ML methods:Decision Tree(DT),Random Forest(RF),Logistic Regression(LR),Naive Bayes(NB),K-Nearest Neighbors(KNN),Support Vector Machines(SVM),and Multilayer Perceptron(MLP)classifiers.The DT,RF,NB,and MLP classifiers helped our model surpass the competition on both datasets.Therefore,the investigational outcomes of our hybrid model may help IDSs defend business assets from various cyberattack vectors.
出处 《Computer Systems Science & Engineering》 2024年第6期1537-1555,共19页 计算机系统科学与工程(英文)
  • 相关文献

二级参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部