期刊文献+

融合注意力机制的多特征艺术图像感知方法研究

Research on multi-feature art image perception based on the integration of attention mechanism
下载PDF
导出
摘要 随着互联网视频图像数据资源的日益增加,以及机器学习的算力与技术的不断突破,海量图文影像的价值特征提取具有可行性。在艺术图像领域,图像的色彩、肌理和形状所蕴含的情感语义特征价值尤为重要。现今的图像情感特征研究领域,使用卷积神经网络模型对图像情感语义进行训练的较多,但关于艺术图像多层次特征感知方向的探究甚少。基于此,文中提出融合注意力机制的多特征融合模型,以提取图像的底层特征,使用融入混合注意力机制的ResNet101模型提取图像深层情感语义特征,实现对艺术图像的情感语义识别。 With the increasing of Internet video image data resources and the continuous breakthrough of machine learning computing power and technology,it is feasible to extract the value features of massive graphic images.In the field of artistic images,the value of the color,texture and shape of the image is particularly important.Nowadays,in the field of image emotion feature research,the convolutional neural network model is often used to train image emotion semantic,but the multi-level feature perception direction of artistic images is rarely explored.Based on this,this paper proposes a multi-feature fusion model integrating attention mechanism to extract the underlying features of images,and uses ResNet101 model integrating mixed attention mechanism to extract the deep emotional semantic features of images to realize emotional semantic recognition of artistic images.
作者 何俊杰 胡建君 HE Jun-jie;HU Jian-jun(School of Art,Shanghai Zhongqiao Vocational and Technical University,Shanghai 200000,China;Shanghai Academy of Fine Arts,Shanghai University,Shanghai 200000,China)
出处 《信息技术》 2024年第11期105-111,119,共8页 Information Technology
基金 2020年上海市上海大学横向科研项目(19H01488)。
关键词 特征融合 视觉感知 注意力机制 feature fusion visual perception attention mechanism
  • 相关文献

参考文献7

二级参考文献30

  • 1向友君,谢胜利.图像检索技术综述[J].重庆邮电学院学报(自然科学版),2006,18(3):348-354. 被引量:39
  • 2Chen H L, Rasmussen E M. Intellectual access to images[ J]. Library Trends, 1999,48 ( 2 ) : 291 - 302.
  • 3Neumann D,Gegenfurtner K R. Image retrieval and perceptual similarity [ J ]. ACM Transactions on Applied Perception, 2006,3( 1 ) :31-47.
  • 4Ritendra D, Dhiraj J, Jia L, et al. Image retrieval : ideas, influ- ences,and trends of the new age [ J ]. ACM Computing Sur- veys,2008,40 ( 2 ) : 1-60.
  • 5Arnold W M, Marcel W, Simone S, et al. Content-based image retrieval at the end of the early years[ J ]. IEEE Trans on Pat- tern Analysis and Machine Intelligence,2000,22 ( 12 ) : 1349-1380.
  • 6Peter E, Christine S. Towards a comprehensive survey of the semantic gap in visual image retrieval [ C ]//Proc of LNCS. [s. 1. ] :[s. n. ] ,2003.
  • 7Datta R,Ge W,Li J,et al. Toward bridging the annotation-re- trieval gap in image search [ J ]. IEEE Multimedia, 2007,14 (3) :24-35.
  • 8Eakins J P. Automatic image content retrieval-are we getting anywhere [ C ]//Proceedings of the third international confer- ence on electronic library and visual information researctl. Mil- ton Keynes : De Monffort University, 1996 : 123-135.
  • 9Swain M J, Ballard D H. Color indexing [ J ]. International Journal of Computer Vision, 1991,7 ( 1 ) : 11-32.
  • 10Stricker M, Orengo M. Similarity of color images[ C ]//Proc of SPIE. [s.l. ] :[s.n. ] ,1995.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部