摘要
随着科学技术的快速发展,识别分析技术领域的发展轨迹和研究热点具有重要意义,但技术数据的爆炸式增长使得人工监测技术趋势的成本和时间增加。鉴于此,提出一种基于论文语义主题和引文分析的技术发展网络图生成方法,以实现技术发展趋势分析。该方法使用自然语言处理(NLP)技术从科学论文中提取潜在的语义特征,并通过聚类分析实现技术领域的主题划分。结合论文技术主题分类和论文引用分析构建由主要论文组成的技术发展网络图,并采用图算法对生成的网络图进行分析以获得有意义的技术趋势结果。根据医疗物联网领域的论文,实现该领域技术主题划分,并生成该领域技术网络图以实现技术趋势分析。特别是,将图算法应用于生成的技术发展网络图,有助于发现医疗保健物联网领域的研究热点及趋势。
With the rapid development of science and technology,identifying the development trajectory and research hotspots in technology domains is of great significance.However,the explosive growth of technical data has made it costly and time-consuming to monitor the technol⁃ogy trend through manually.Therefore,this paper proposes a technology development network maps generation method based on semantic and citation analysis to enable technology trend analysis.The proposed method involves extracting latent semantic features from scientific papers using natural language processing(NLP)techniques,and combines these semantic features to achieve sub-topic division of a technical do⁃main through cluster analysis.Then,a technology development network map composed of main papers is constructed by combining paper topic classification and paper citation analysis,and graph algorithms are used to analyze the generated network map to obtain meaningful technology trend results.By using the papers in the field of healthcare IoT,this paper realizes the sub-topic division in this field,and generates the tech⁃nology development network map in this field to realize the technical trend analysis.Especially,the application of graph algorithm to the gener⁃ated technology development network map is helpful to find the hot spots and trends in the field of healthcare Internet of Things.
作者
马健兵
徐池
MA Jianbing;XU Chi(College of Computer Science,Chengdu University of Information Technology,Chengdu 610225,China)
出处
《软件导刊》
2024年第11期100-106,共7页
Software Guide
基金
四川省重点研发计划项目(2021YFG0345)。
关键词
技术发展网络图
趋势分析
主题模型
自然语言处理
词嵌入
医疗物联网
technology development network map
trend analysis
topic modeling
natural language processing(NLP)
word embedding
healthcare IoT