期刊文献+

基于YOLOv5的静态手势识别检测模型

Detection Model for Static Gesture Recognition Based on YOLOv5
下载PDF
导出
摘要 针对实时手势检测需求,提出一种基于YOLOv5的手势识别算法。通过采用轻量级主干网络MobileNetV3替代YOLOv5s中的CSPNet-53,优化后的主干网络整合了深度可分离卷积与SE注意力机制,形成模型M_YOLO_N(Mo⁃bileNet_YOLOv5_NewIou)。与原始模型相比,M_YOLO_N的参数量减少了33%,计算复杂度(GFLOPs)降低了54%,在自制手势数据集上的mAP@0.5提升了2.4%。该模型不仅实现了轻量化,而且有效解决了实时检测问题。针对多尺度手势检测,保留SPPF模块,并引入归一化高斯瓦伦汀距离(NWD)技术,提出新的边界框损失函数NewIoU。在不增加参数的前提下,改进后的模型在多尺度手势检测中的置信度提升了20%。 To meet the demand for real-time hand gesture detection,this paper presents a YOLOv5-based gesture recognition algorithm.By replacing CSPNet-53 in YOLOv5s with the lightweight MobileNetV3,the optimized backbone integrates depthwise separable convolutions and the SE attention mechanism,forming the M_YOLO_N model.Compared to the original,M_YOLO_N reduces parameters by 33%and decreas⁃es computational complexity by 54%.On a custom dataset,mAP@0.5 increased by 2.4%.This model achieves both lightweight design and re⁃al-time detection.For multi-scale detection,the SPPF module is retained,and the normalized Wasserstein distance(NWD)is introduced,proposes a new bounding box loss function NewIoU.Without increasing parameters,detection confidence improved by 20%.
作者 程亚龙 梁军 邹雲宇 CHENG Yalong;LIANG Jun;ZOU Yunyu(School of Software,South China Normal University,Foshan 528225,China)
出处 《软件导刊》 2024年第11期181-186,共6页 Software Guide
基金 广东省基础与应用基础研究基金项目(2022A1515140110,2021A1515110673,2020B1515120089) 佛山市高等教育高层次人才项目(2022)。
关键词 YOLOv5 手势识别 深度可分离卷积 注意力机制 YOLOv5 gesture recognition depth separable convolution attention mechanism
  • 相关文献

参考文献6

二级参考文献59

  • 1程淑红,程彦龙,杨镇豪.基于手势多特征融合及优化Multiclass-SVC的手势识别[J].仪器仪表学报,2020(6):225-232. 被引量:13
  • 2Chen Y T, Tseng K T. Developing a multiple-angle hand gesture recognition system for human machine interactions [ C ]//Pro- ceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society. Taipei, China: IEEE, 2007: 489-492. [ DOI : 10. 1109/IECON. 2007. 4460049 ].
  • 3Ong S C W, Ranganath S. Automatic sign language analysis: a survey and the future beyond lexical meaning [ J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2005, 27(6) : 873-891. [ DOI: 10. l l09/TPAMI. 2005. 112].
  • 4Wachs J P, Stern H J, Edan Y, et al. A gesture-based tool for sterile browsing of radiology images [ J]. Journal of the American Medical Informatics Association, 2008, 15 ( 3 ) : 321-323. [DOI: 10. l197/jamia. M241 ].
  • 5Leyvand T, Meekhof C, Wei Y C, et al. Kinect identity : tech- nology and experience [ J ]. Computer, 2011, 44 (4) : 94-96. [DOI: 10. 1109/MC.2011. 114].
  • 6Zhang D, Lu G. Review of shape representation and description techniques [ J ]. Pattern Recognition, 2004, 37 ( 1 ) : 1-19. [DOI : 10. 1016/'j. patcog. 2003.07. 008 ].
  • 7Chalechale A, Safaei F, Naghdy G, ct al. Hand posture analysis for visual based human machine interface [ C ]//Proceedings of APRS Workshop on Digital Image Computing. St Lucia, Austra- lia: The University of Queensland, 2005: 91-96.
  • 8I-Iu M K. Visual pattern recognition by moment invariants [ J]. IRE Transaction on Information Theory, 1962, 8(2) : 179-187. [DOI : 10. 1109/TIT. 1962. 1057692 ].
  • 9Priyal S P, Bora P K. A robust static hand gesture recognition system using geometry based normalizations and Krawtehouk mo- ments [ J]. Pattern Recognition, 2013, 46 (8) : 2202-2219. [DOI: 10. 1016/j. patcog. 2013.01. 033 ].
  • 10Yap P T, Paramesran R, Ong S H. Image analysis by Krawt- chouk moments [ J]. IEEE Transactions on Image Processing, 2003, 12(11): 1367-1376. [DOI: 10. ll09/TIP. 2003. 818019].

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部